首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we developed the methods based on nonpolynomial cubic spline for numerical solution of second‐order nonhomogeneous hyperbolic partial differential equation. Using nonpolynomial cubic spline in space and finite difference in time directions, we obtained the implicit three level methods of O(k2 + h2) and O(k2 + h4). The proposed methods are applicable to the problems having singularity at x = 0, too. Stability analysis of the presented methods have been carried out. The presented methods are applied to the nonhomogeneous examples of different types. Numerical comparison with Mohanty's method (Mohanty, Appl Math Comput, 165 (2005), 229–236) shows the superiority of our presented schemes. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

2.
In this paper, we propose a new high accuracy numerical method of O(k2 + k2h2 + h4) based on off-step discretization for the solution of 3-space dimensional non-linear wave equation of the form utt = A(x,y,z,t)uxx + B(x,y,z,t)uyy + C(x,y,z,t)uzz + g(x,y,z,t,u,ux,uy,uz,ut), 0 < x,y,z < 1,t > 0 subject to given appropriate initial and Dirichlet boundary conditions, where k > 0 and h > 0 are mesh sizes in time and space directions respectively. We use only seven evaluations of the function g as compared to nine evaluations of the same function discussed in  and . We describe the derivation procedure in details of the algorithm. The proposed numerical algorithm is directly applicable to wave equation in polar coordinates and we do not require any fictitious points to discretize the differential equation. The proposed method when applied to a telegraphic equation is also shown to be unconditionally stable. Comparative numerical results are provided to justify the usefulness of the proposed method.  相似文献   

3.
In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0<α<1. The order of convergence of the numerical method is O(h 3?α ). Our second approach is based on discretisation of the integral form of the fractional differential equation and we obtain a fractional Adams-type method for a nonlinear fractional differential equation of any order α>0. The order of convergence of the numerical method is O(h 3) for α≥1 and O(h 1+2α ) for 0<α≤1 for sufficiently smooth solutions. Numerical examples are given to show that the numerical results are consistent with the theoretical results.  相似文献   

4.
This article is devoted to the study of high order accuracy difference methods for the Cahn-Hilliard equation.A three level linearized compact difference scheme is derived.The unique solvability and unconditional convergence of the difference solution are proved.The convergence order is O(τ 2 + h 4 ) in the maximum norm.The mass conservation and the non-increase of the total energy are also verified.Some numerical examples are given to demonstrate the theoretical results.  相似文献   

5.
This paper details our note [6] and it is an extension of our previous works  and  which dealt with first order (both in time and space) and second order time accurate (second order in time and first order in space) implicit finite volume schemes for second order hyperbolic equations with Dirichlet boundary conditions on general nonconforming multidimensional spatial meshes introduced recently in [14]. We aim in this work (and some forthcoming studies) to get higher order (both in time and space) finite volume approximations for the exact solution of hyperbolic equations using the class of spatial generic meshes introduced recently in [14] on low order schemes from which the matrices used to compute the discrete solutions are sparse. We focus in the present contribution on the one dimensional wave equation and on one of its implicit finite volume schemes described in [4]. The implicit finite volume scheme approximating the one dimensional wave equation we consider (hereafter referred to as the basic finite volume scheme) yields linear systems to be solved successively. The matrices involved in these linear systems are tridiagonal, symmetric and definite positive. The finite volume approximate solution of the basic finite volume scheme is of order h+kh+k, where h (resp. k  ) is the mesh size of the spatial (resp. time) discretization. We construct a new finite volume approximation of order (h+k)2(h+k)2 in several discrete norms which allow us to get approximations of order two for the exact solution and its first derivatives. This new high-order approximation can be computed using linear systems whose matrices are the same ones used to compute the discrete solution of the basic finite volume scheme while the right hand sides are corrected. The construction of these right hand sides includes the approximation of some high order spatial derivatives of the exact solution. The computation of the approximation of these high order spatial derivatives can be performed using the same matrices stated above with another two tridiagonal matrices. The manner by which this new high-order approximation is constructed can be repeated to compute successively finite volume approximations of arbitrary order using the same matrices stated above. These high-order approximations can be obtained on any one dimensional admissible finite volume mesh in the sense of [13] without any condition. To reach the above results, a theoretical framework is developed and some numerical examples supporting the theory are presented. Some of the tools of this framework are new and interesting and they are stated in the one space dimension but they can be extended to several space dimensions. In particular a new and useful a prior estimate for a suitable discrete problem is developed and proved. The proof of this a prior estimate result is based essentially on the decomposition of the solution of the discrete problem into the solutions of two suitable discrete problems. A new technique is used in order to get a convenient finite volume approximation whose discrete time derivatives of order up to order two are also converging towards the solution of the wave equation and their corresponding time derivatives.  相似文献   

6.
In this paper, by using a new non-polynomial parameters cubic spline in space direction and compact finite difference in time direction, we get a class of new high accuracy scheme of O(τ4 + h2) and O(τ4 + h4) for solving telegraph equation if we suitably choose the cubic spline parameters. Meanwhile, stability condition of the difference scheme has been carried out. Finally, numerical examples are used to illustrate the efficiency of the new difference scheme.  相似文献   

7.
In this paper, two classes of methods are developed for the solution of two space dimensional wave equations with a nonlinear source term. We have used non-polynomial cubic spline function approximations in both space directions. The methods involve some parameters, by suitable choices of the parameters, a new high accuracy three time level scheme of order O(h 4 + k 4 + τ 2 + τ 2 h 2 + τ 2 k 2) has been obtained. Stability analysis of the methods have been carried out. The results of some test problems are included to demonstrate the practical usefulness of the proposed methods. The numerical results for the solution of two dimensional sine-Gordon equation are compared with those already available in literature.  相似文献   

8.
The present work is an extension of our previous works ,  and  which dealt with first order (both in time and space) and second order time accurate (second order in time and first order in space) implicit finite volume schemes for parabolic equations. We aim in this work (and some forthcoming studies) at getting higher order (both in time and space) finite volume approximations for the exact solution of parabolic equations using the class of spatial generic meshes introduced recently in [13]. We focus in the present contribution on the one dimensional heat equation and its implicit finite volume scheme described in [3]. The implicit finite volume scheme approximating the one dimensional heat equation we consider (hereafter referred to as the basic finite volume scheme) yields linear systems to be solved successively. The matrices involved in these linear systems are tridiagonal. The finite volume approximate solution is of order h+kh+k, where h (resp. k  ) is the mesh size of the spatial (resp. time) discretization. We construct a new finite volume approximation of order (h+k)2(h+k)2 in several discrete norms which allows us to get approximations of order two for the exact solution and its first derivatives. This new high-order approximation can be computed using the same linear systems involved in the basic finite volume scheme while the right hand sides are corrected. The construction of these right hand sides includes the approximations of the second, third, and fourth spatial derivatives of the exact solution. The computation of the approximation of these high-order derivatives can be performed using the same matrices stated above with another two tridiagonal matrices. The manner by which this new high-order approximation is constructed can be repeated to compute successively finite volume approximations of arbitrary order using the same matrices stated above. These high-order approximations can be obtained on any one dimensional admissible finite volume mesh in the sense of [12] without any restrictive condition on the spatial mesh. A full analysis for the stated theoretical results as well as some numerical examples supporting the theory is presented. The results obtained in the present study are based essentially on two facts. The first fact is the use of the results provided in [3] which state the convergence order of the finite volume approximate solution in several norms. The second fact is the comparison between the stated new higher order approximations and suitable auxiliary finite volume approximations.  相似文献   

9.
In the article, two linearized finite difference schemes are proposed and analyzed for the Benjamin–Bona–Mahony–Burgers (BBMB) equation. For the construction of the two-level scheme, the nonlinear term is linearized via averaging k and k + 1 floor, we prove unique solvability and convergence of numerical solutions in detail with the convergence order O(τ2 + h2) . For the three-level linearized scheme, the extrapolation technique is utilized to linearize the nonlinear term based on ψ function. We obtain the conservation, boundedness, unique solvability and convergence of numerical solutions with the convergence order O(τ2 + h2) at length. Furthermore, extending our work to the BBMB equation with the nonlinear source term is considered and a Newton linearized method is inserted to deal with it. The applicability and accuracy of both schemes are demonstrated by numerical experiments.  相似文献   

10.
In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order 0 < α < 1 ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent withO(Τ +h 2), where Τ andh are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.  相似文献   

11.
In this article, new stable two‐level explicit difference methods of O(kh2 + h4) for the estimates of for the two‐space dimensional quasi‐linear parabolic equation are derived, where k > 0 and h > 0 are grid sizes in time and space directions, respectively. We use a single computational cell for the methods, which are applicable to the problems both in cartesian and polar coordinates. The proposed methods have the simplicity in nature and employ the same marching type technique of solution. Numerical results obtained by the proposed methods for several different problems were compared with the exact solutions. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 250–261, 2001  相似文献   

12.
In this paper, we consider the local discontinuous Galerkin (LDG) finite element method for one-dimensional linear time-fractional Tricomi-type equation (TFTTE), which is obtained from the standard one-dimensional linear Tricomi-type equation by replacing the first-order time derivative with a fractional derivative (of order α, with 1?<?α?≤?2). The proposed LDG is based on LDG finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the numerical solution converges to the exact one with order O(h k?+?1?+?τ 2), where h, τ and k are the space step size, time step size, polynomial degree, respectively. The comparison of the LDG results with the exact solutions is made, numerical experiments reveal that the LDG is very effective.  相似文献   

13.
In this paper, a linear three-level average implicit finite difference scheme for the numerical solution of the initial-boundary value problem of Generalized Rosenau-Burgers equation is presented. Existence and uniqueness of numerical solutions are discussed. It is proved that the finite difference scheme is convergent in the order of O(τ2 + h2) and stable. Numerical simulations show that the method is efficient.  相似文献   

14.
In this paper, we propose a new three-level implicit nine point compact finite difference formulation of O(k2 + h4) based on non-polynomial tension spline approximation in r-direction and finite difference approximation in t-direction for the numerical solution of one dimensional wave equation in polar co-ordinates. We describe the mathematical formulation procedure in details and also discuss the stability of the method. Numerical results are provided to justify the usefulness of the proposed method.  相似文献   

15.
16.
This is the further work on compact finite difference schemes for heat equation with Neumann boundary conditions subsequent to the paper, [Sun, Numer Methods Partial Differential Equations (NMPDE) 25 (2009), 1320–1341]. A different compact difference scheme for the one‐dimensional linear heat equation is developed. Truncation errors of the proposed scheme are O2 + h4) for interior mesh point approximation and O2 + h3) for the boundary condition approximation with the uniform partition. The new obtained scheme is similar to the one given by Liao et al. (NMPDE 22 (2006), 600–616), while the major difference lies in no extension of source terms to outside the computational domain any longer. Compared with ones obtained by Zhao et al. (NMPDE 23 (2007), 949–959) and Dai (NMPDE 27 (2011), 436–446), numerical solutions at all mesh points including two boundary points are computed in our new scheme. The significant advantage of this work is to provide a rigorous analysis of convergence order for the obtained compact difference scheme using discrete energy method. The global accuracy is O2 + h4) in discrete maximum norm, although the spatial approximation order at the Neumann boundary is one lower than that for interior mesh points. The analytical techniques are important and can be successfully used to solve the open problem presented by Sun (NMPDE 25 (2009), 1320–1341), where analyzed theoretical convergence order of the scheme by Liao et al. (NMPDE 22 (2006), 600–616) is only O2 + h3.5) while the numerical accuracy is O2 + h4), and convergence order of theoretical analysis for the scheme by Zhao et al. (NMPDE 23 (2007), 949–959) is O2 + h2.5), while the actual numerical accuracy is O2 + h3). Following the procedure used for the new obtained difference scheme in this work, convergence orders of these two schemes can be proved rigorously to be O2 + h4) and O2 + h3), respectively. Meanwhile, extension to the case involving the nonlinear reaction term is also discussed, and the global convergence order O2 + h4) is proved. A compact ADI difference scheme for solving two‐dimensional case is derived. Finally, several examples are given to demonstrate the numerical accuracy of new obtained compact difference schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
Using methods of numerical integration, difference schemes of sixth order with off-step points have been obtained and applied to the second order differential equation, with and without mixed boundary conditions. Numerical results obtained by these methods have been compared with those obtained by using h4-extrapolation of the Numerov method. It is found that the sixth-order method based upon 4-point Lobatto quadrature with approximation 2 is more economical and accurate from the computational viewpoint than the existing sixth-order methods.  相似文献   

18.
In this article, using a single computational cell, we report some stable two‐level explicit finite difference approximations of O(kh2 + h4) for ?u/?n for three‐space dimensional quasi‐linear parabolic equation, where h > 0 and k > 0 are mesh sizes in space and time directions, respectively. When grid lines are parallel to x‐, y‐, and z‐coordinate axes, then ?u/?n at an internal grid point becomes ?u/?x, ?u/?y, and ?u/?z, respectively. The proposed methods are also applicable to the polar coordinates problems. The proposed methods have the simplicity in nature and use the same marching type of technique of solution. Stability analysis of a linear difference equation and computational efficiency of the methods are discussed. The results of numerical experiments are compared with exact solutions. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 327–342, 2003.  相似文献   

19.
The aim of this article is to analyze a new compact finite difference method (CFDM) for solving the generalized regularized long wave (GRLW) equation. This method leads to a system of linear equations involving tridiagonal matrices and the rate of convergence of the method is of order O(k 2 + h 4) where k and h are mesh sizes of time and space variables, respectively. Stability analysis of the method is investigated by the energy method and an error estimate is given. The propagation of single solitons and interaction of two solitary waves are applied to validate the method which is found to be accurate and efficient. Three invariants of the motion are evaluated to determine conservation properties of the method.  相似文献   

20.
In this article, a local discontinuous Galerkin (LDG) method is studied for numerically solving the fractal mobile/immobile transport equation with a new time Caputo–Fabrizio fractional derivative. The stability of the LDG scheme is proven, and a priori error estimates with the second‐order temporal convergence rate and the (k + 1) th order spatial convergence rate are derived in detail. Finally, numerical experiments based on Pk, k = 0, 1, 2, 3, elements are provided to verify our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号