首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effluent arriving from the Mondi Kraft paper mill at Piet Retief, South Africa, was filtered through tubular poly(ether sulphone) (PES) ultrafiltration membranes under constant pressure cross-flow conditions. The effluent that was fed into the membranes and permeate produced during filtration were characterised by UV–VIS light-spectroscopy. Substances that absorbed onto membranes during filtration caused changes to the permeability characteristics of the membranes. Changes in membrane performance were monitored by pure-water and product flux (pf) measurements.A colourimetric staining technique was developed to determine the nature of foulants adsorbed onto the membranes. Membrane cleaning solutions were subsequently selected using information obtained from the characterisation studies. In addition, the anti-fouling potential of non-covalently attached coating materials was investigated as a possible membrane pretreatment technique. Results showed that foulants present in the effluent are of phenolic and hydrophobic nature. Increasing the hydrophilic characteristics of membranes prior to filtration could reduce the amount of organic foulants that adsorbed onto the membranes. Membrane pretreatment not only reduced fouling, but also improved the effectiveness of cleaning methods. Membranes were effectively cleaned by a combination of mechanical and chemical cleaning techniques.  相似文献   

2.
A limiting flux model has been recently developed for predicting the fouling behavior of reverse osmosis and nanofiltration membranes by organic macromolecules [C.Y. Tang, J.O. Leckie, Membrane independent limiting flux for RO and NF membranes fouled by humic acid, Environmental Science and Technology 41 (2007) 4767–4773]. Several interesting results have been observed: (a) there was a maximum pseudo-stable flux (the limiting flux) beyond which further increase in applied pressure did not translate to a greater stable flux; (b) all membrane samples attained the limiting flux under constant pressure conditions as long as their initial flux was greater than the limiting flux; (c) the limiting flux did not depend on the properties of membranes; (d) the limiting flux had strong dependence on the feedwater composition, such as pH, ionic strength, and divalent ion concentration. The current study investigates the dependence of limiting flux on intermolecular interaction between foulant molecules. It was observed that the limiting flux was directly proportional to the intermolecular electrostatic repulsive force and that conditions enhancing foulant-deposited-foulant repulsion resulted in greater limiting flux values. Such observations agree well with a theoretical model capturing both hydrodynamic and DLVO interactions. Interaction force measurements by atomic force microscopy (AFM) were also performed. The limiting flux correlated reasonably well with AFM interaction force between the model foulant and the fouled membrane surface.  相似文献   

3.
Reverse osmosis (RO) is being increasingly used in treatment of domestic wastewater secondary effluent for potable and non-potable reuse. Among other solutes, dissolved biopolymers, i.e., proteins and polysaccharides, can lead to severe fouling of RO membranes. In this study, the roles of RO membrane surface properties in membrane fouling by two model biopolymers, bovine serum albumin (BSA) and sodium alginate, were investigated. Three commercial RO membranes with different surface properties were tested in a laboratory-scale cross-flow RO system. Membrane surface properties considered include surface roughness, zeta potential, and hydrophobicity. Experimental results revealed that membrane surface roughness had the greatest effect on fouling by the biopolymers tested. Accordingly, modified membranes with smoother surfaces showed significantly lower fouling rates. When Ca2+ was present, alginate fouled RO membranes much faster than BSA. Considerable synergistic effect was observed when both BSA and alginate were present. The larger foulant particle sizes measured in the co-existence of BSA and alginate indicate formation of BSA-alginate aggregates, which resulted in greater fouling rates. Faster initial flux decline was observed at higher initial permeate flux even when the flux was measured against accumulative permeate volume, indicating a negative impact of higher operating pressure.  相似文献   

4.
Compared to other typical cleaning agents, application of enzyme in cleaning of membranes fouled with protein solution promised the high cleaning efficiencies with lower environmental impact. This paper is focused on the mechanisms of protein removal by enzyme cleaning agent from the membrane surface by analysis hydraulic resistance, total protein removal using Lowry method, and membrane surface analysis using MALDI-MS and gel electrophoresis to estimate the foulant composition. Using single and binary protein solutions of bovine serum albumin and beta-lactoglobulin as the feed solution for filtration process, the experimental results indicate that optimum cleaning time and cleaning agent concentration is due to the competition between foulant removal and deposition of enzymes on the membrane during the cleaning process. The removal rate of different protein species in the fouling layer is varied, indicating that cleaning strategies can be tailor-made for fouling layer with different protein compositions.  相似文献   

5.
Recent studies have shown that membrane surface morphology and structure influence permeability, rejection, and colloidal fouling behavior of reverse osmosis (RO) and nanofiltration (NF) membranes. This investigation attempts to identify the most influential membrane properties governing colloidal fouling rate of RO/NF membranes. Four aromatic polyamide thin-film composite membranes were characterized for physical surface morphology, surface chemical properties, surface zeta potential, and specific surface chemical structure. Membrane fouling data obtained in a laboratory-scale crossflow filtration unit were correlated to the measured membrane surface properties. Results show that colloidal fouling of RO and NF membranes is nearly perfectly correlated with membrane surface roughness, regardless of physical and chemical operating conditions. It is further demonstrated that atomic force microscope (AFM) images of fouled membranes yield valuable insights into the mechanisms governing colloidal fouling. At the initial stages of fouling, AFM images clearly show that more particles are deposited on rough membranes than on smooth membranes. Particles preferentially accumulate in the “valleys” of rough membranes, resulting in “valley clogging” which causes more severe flux decline than in smooth membranes.  相似文献   

6.
The algae bloom phenomenon incurs a major challenge to conventional drinking water treatment processes due to the discharges of a large amount of intracellular pollutant and odor compounds in the water sources. Membrane processes have been considered as promising technologies to treatment of algal-rich water due to complete algal cell rejection however, its application has been limited by membrane fouling. In this work, the high-performance loose antifouling PES NF membranes were fabricated using diazonium-induced grafting and applied for treating real algal effluent. The modified membranes exhibited complete algal dye removal and turbidity removal throughout the long-term filtration. Also, the coupling and radically modified membranes can be able to removed COD by up to 90% and 88%, respectively, while a removal efficiency of 24% was observed for bare membrane. It is worth noting that, a relative smooth behavior in permeate flux by loose modified membranes during prolonged algal dye filtration, demonstrating exceptional anti-fouling property of membranes. In addition, the fouled modified membranes were effectively recovered by water flushing. Both loose modified membranes exhibited excellent resistance in the strongly acidic environment. These high performance antifouling NF membranes affords an innovative methodology toward the treatment of algal-rich water.  相似文献   

7.
A new amphiphilic copolymer TD‐A is melt‐blended with polyvinylidene fluoride to fabricate hollow fiber membranes in order to improve the hydrophilicity and anti‐fouling property. Membrane samples with different blending ratios are prepared via thermally induced phase separation method. An optimum blending ratio of TD‐A (10 wt%) is determined by a series of characterizations to evaluate the effects of TD‐A contents on membrane properties. The hydrophilicity of the blended membrane samples increases with the increasing blending ratio, but excessive content of TD‐A in blended membranes can lead to structural defects and reduction of mechanical properties. TD‐A blended hollow fiber membrane with optimum blending ratio shows excellent bi‐continuous structure and high water flux. Membrane fouling is remarkably reduced due to the incorporation of TD‐A by static absorption and cyclic filtration tests of bovine serum albumin. Moreover, constant surface chemical compositions and stable flux during long‐term chemical cleaning demonstrate the hydrophilic stability of the blended membrane.  相似文献   

8.
Nanofiltration systems are generally cleaned chemically. The optimal choice of the cleaning agent is a function of membrane material and foulant in a complex manner. This study evaluated the cleaning efficiency and effects of several cleaning agents on NF255 nanofiltration membrane. The nanofiltration pilot plant was fed with conventionally-treated surface water from a water treatment plant in southern Finland. Fouled membranes were cleaned weekly with different chemicals and procedures, and the cleaning efficiencies were compared in terms of flux recoveries and foulant removals. On the basis of the cleaning chemical analysis, the fouling material consisted of biofouling, organic deposits and metal complexes. In these circumstances, alkaline cleaners with chelatants resulted in the most efficient cleaning both in terms of flux recovery and foulant removal. Alkaline cleaning modified the membrane and improved the flux substantially in comparison to the virgin state. The results demonstrate that the choice of chemical cleaning agent is critical to cleaning efficiency, both technically and economically. The same flux recovery could be reached either by a single cleaning phase or by three sequential cleaning phases.  相似文献   

9.
Apart from considerations for hygienic operation, membrane cleaning is essential to maintain consistent permeability and selectivity of membrane systems for clarifying beer and beverages where balanced fractionation of particles/macromolecules is necessary. Experiments involved formulating and optimising chemical cleaning methods for a ceramic microfiltration membrane, which had been severely fouled during clarification of a commercial beer. The cleaning processes employed NaOH, HNO3, H2O2, and Ultrasil 11 as the chemical cleaning agents. The cleaning ability and cleaning kinetics of the processes were evaluated in parallel with the study of the fouling mechanism, formation and strength so as to elucidate the synergetic relationship between fouling and cleaning. A three-step cleaning mechanism was postulated. This led to the development of a fast and effective combined simultaneous caustic cleaning and oxidation method (CSCCO), which was able to restore 87% of the original membrane's water permeability within 8 min. Analysis suggested the concept of a cleaning energy barrier Ec and a cleaning rate constant kc0. This study confirmed the existence of a synergetic relationship between the prior fouling and optimum formulation of cleaner and optimal cleaning condition. The study varied beer filtration conditions. Transmembrane pressure (TMP) and crossflow velocity during fouling appeared to have a minimal effect on the membrane's subsequent cleanability, especially when the powerful CSCCO process was employed. The number of previous fouling/cleaning cycles was influential. A complete removal of the residual fouling, formed on the virgin membrane's surface proved beyond the means of the harsh chemical cleaning used under any conditions. The degree of residual fouling eventually reached a plateau and a level of 87% of the original water flux could be restored repeatedly.  相似文献   

10.
Severe flux decline was observed during ultrafiltration of a pulp mill effluent. Membrane fouling was the result of varying combinations of adsorption, pore plugging and concentration polarization or gel layer formation. A wide range of membrane materials and pore sizes were evaluated, showing the relationship between the membrane material, pore size and the relative contribution of the different fouling mechanisms. Individual resistances were evaluated for adsorption, Ra, pore plugging, Rpp, and concentration polarization, Rcp, using a series resistance model. These were based on the pure water flux for (1) the new membrane, Ji, (2) after static adsorption with the mill effluent, Ja, (3) the product rate when ultrafiltering the effluent, Jv, and (4) the pure water permeability with the fouled membrane, Jf. These resistances were shown to be misleading in terms of the observed flux loss for cases with significant adsorptive fouling. Adsorptive fouling was underestimated and concentration polarization overestimated. An alternative method, which we shall call flux loss ratios, is proposed, which is based on the flux decline due to a particular mechanisms as a fraction of the overall flux decline. These new measures more accurately reflect the flux decline attributable to each fouling mechanism.  相似文献   

11.
The primary aim of this paper was to develop a more effective and economical procedure for cleaning polyethylene hollow fiber microfiltration membranes that have been used for removing oil from contaminated seawater. Alkaline cleaning showed higher recovery of operating cycle time but lower permeate flux recovery than acid cleaning. The combination of both alkaline and acid cleaning agents gave the best operating cycle time and flux recoveries (e.g. 96% and 94%, respectively). As the cleaning agent soaking time was reduced, the actual operating cycle time was reduced. However, the ratio of operating time/chemical cleaning time increased as the soaking time was reduced. The soaking time was recommended to be as short as possible (8–10 h) in the design of small capacity plants and 30 h or higher in case of large capacity plants. SEM analysis showed that in case of alkaline cleaning, most of the pores remained covered with a foulant layer, resulting in low flux recovery. The SEM results of acid cleaned membranes showed more complete removal of the foulant layer from the pores resulting in better flux recovery. Surface analysis of membranes cleaned with combined acid/base agents showed the best results. A membrane surface similar to the original one was obtained. The long-term objective is to increase the understanding of membrane fouling phenomena, preventive means and membrane cleaning processes as it applies to the clean-up and desalination of oil contaminated seawater.  相似文献   

12.
Large sheet asymmetric polyethersulfone (PES) ultrafiltration membranes were prepared via phase inversion process in a continuous conveyor system with addition of PVP to the casting solution. Dimethylacetamide (DMAc) and mixture of water and isopropyl alcohol (70/30 v%) were used as solvent and non‐solvent respectively. The prepared membrane was 0.96 m wide and 3 m long. The pieces of the membrane were selected randomly for characterization in terms of performance using cross flow filtration for milk concentration, image analysis, scanning electron microscopy (SEM), and cleaning procedures. It was found that the prepared membrane has high porosity and high water flux during milk filtration. In addition, cleaning experiments indicated that NaOH/HCl/NaOH sequence is an effective procedure for cleaning the fouled membrane during milk concentration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A new ultra-filtration membrane has been developed using indigenously available polymer, low cost solvents and a simple casting technique. The performance evaluation of the developed membrane in terms of pure water permeability (PWP), flux and rejection as compared to commercially available national and international membranes was carried out. It is observed that the newly developed membranes show acceptable performance both in terms of flux and rejection. The compressibility characteristic of the new membrane shows an improvement after suitable chemical modification through cross-linking reactions. The application perspectives of the membranes developed in our laboratory have been evaluated for the selective separation of dyes from typical textile waste stream of polyester fibre dyeing units with an aim to recover and recirculate the auxiliary chemicals and water in the process house. The rejection of dyes >98% and the permeate flux (0.8–1.0 m3/m2 per day) values obtained for a specific type of textile effluent is of acceptable standards.The membranes were characterised for pore size and pore size distribution using molecular weight cut-off, combined bubble pressure and solvent permeability method. Membrane morphology has been studied using scanning electron microscopy (SEM). The other features of the developed membrane are its resistance to temperature and adverse chemical environment.  相似文献   

14.
Min Shang  Baoli Shi 《Chemical Papers》2018,72(12):3159-3167
Cellulose acetate (CA) forward osmosis (FO) membranes were prepared via a phase inversion process. CA was used as membrane material for FO. Acetone and 1,4-dioxane were employed as solvent. Polyvinylpyrrolidone (PVP), maleic acid, and methanol were applied as additives. An orthogonal experiment was performed to optimize the ratio of every component in the casting solution. The membrane with best performance was selected to concentrate an anthocyanin solution. Saturated sucrose solution (about 60°Brix) was fit for using as draw solution in the concentration experiment. Water flux, porosity, and rejection rate were measured to evaluate the membrane properties. Reverse water rinsing was used in cleaning membrane that was fouled by anthocyanin solution. Results showed that under membrane thickness of 100 μm, coagulation temperature at room temperature, and evaporation time of 30 s, the optimum components in casting solution were 13% CA, 45% 1,4-dioxane, 31% acetone, 2% maleic acid, 3% PVP, and 6% methanol. In the concentration experiment, the prepared FO membrane showed water flux of 2.04 L m?2 h?1 and rejection rate of 98.61%. In the membrane cleaning experiment, the water flux of the FO membrane recovered 87.51% after rinsing for 1 h. The prepared membranes and previously published membranes were compared which showed the prepared membrane could significantly improve the rejection rate for anthocyanin solution.  相似文献   

15.
The aqueous extract of soy flour is an emulsion/suspension of proteins, lipids and carbohydrates. The foulant deposit formed on the surface of polysulfone membranes in the ultrafiltration of this complex extract was investigated from several aspects including thickness, physical structure, chemical analysis and rheological behaviour. SEM studies showed the thickness of the foulant deposit was approximately 0.2 μm for 50000 MWCO membrane and 0.4 μm for 100000 MWCO membrane. The structure of the foulant deposit consisted of lipids in a globular form of 0.2 to 1 μm diameter adhered to, and supported by, a protein-polysaccharide matrix. Rheological measurements were conducted on a sample of the foulant deposit collected from the 100000 MWCO membrane. This foulant deposit exhibited pseudoplastic and viscoelastic properties which totally resisted the surface shear stresses in the flat-plate module. Recovery of the water flux of the fouled membranes was achieved by a four-stage cleaning procedure comprising successive stages of washing with sodium hydroxide, protease detergent, sodium hypochlorite and flushing with water.  相似文献   

16.
The effects of surface water pretreatment on membrane fouling and the influence of these different fouling types on the rejection of 21 neutral, positively and negatively charged pharmaceuticals were investigated for two nanofiltration membranes. Untreated surface water was compared with surface water, pretreated with a fluidized anionic ion exchange and surface water, pretreated with ultrafiltration. Fouling the nanofiltration membranes with anionic ion exchange resin effluent, resulted in the deposition of a mainly colloidal fouling layer, with a rough morphology. Fouling the nanofiltration membranes with ultrafiltration permeate, resulted in the deposition of a smooth fouling layer, containing mainly natural organic matter. The fouling layer on the nanofiltration membranes, caused by the filtration of untreated surface water, was a combination of both colloids and natural organic matter.Rejection of pharmaceuticals varied the most for the membranes, fouled with the anionic ion exchange effluent, and variations in rejection were caused by a combination of cake-enhanced concentration polarisation and electrostatic (charge) effects. For the membranes, fouled with the other two water types, variations in rejection were smaller and were caused by a combination of steric and electrostatic effects.Changes in membrane surface hydrophobicity due to fouling, changed the extent of partitioning and thus the rejection of hydrophobic, as well as hydrophilic pharmaceuticals.  相似文献   

17.
Porous hydrophobic polypropylene (PP) membranes were subjected to the surface modification by the γ-ray induced graft copolymerization with hydrophilic 2-hydroxyethyl methacrylate (HEMA). The structural changes and surface morphologies of the modified PP membranes were characterized by a Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA) and field emission scanning electron microscopy (FE-SEM). Peroxides produced from γ-ray irradiation were determined by a 1,1-diphenyl-2-picryl hydrazyl (DPPH) method and the surface hydrophilicities of membranes were measured by a static contact angle measurement. The contact angle of the modified membranes reduced with the degree of grafting (DG) of HEMA onto the membrane surface, and it decreased up to about half of that before modification. The permeation behaviors of all membranes were investigated by a bovine serum albumin (BSA) filtration experiment. As a result, the DG of the modified membrane increased with the reaction time. However, in the case of irradiation dosage it showed the maximum value at 20 kGy. Also, the modified membrane showed a higher solution flux, lower BSA adsorption, and the better flux recovery after cleaning than that of the unmodified membrane. Particularly, 40.6% grafted membrane showed a two-fold increase in a BSA solution flux, 62% reduction in total fouling and three-fold increase in flux recovery after chemical cleaning.  相似文献   

18.
侯淑华  郑吉富  董雪 《应用化学》2017,34(6):644-648
膜分离技术广泛应用于水处理、医药、食品、化工等领域。但在膜使用过程中,膜容易被蛋白质和细菌所污染,降低了膜的分离性能和使用寿命,提高了膜技术的应用成本,极大的限制了膜的应用。本文以含羧基的酚酞聚芳醚酮(PEK-COOH)制备超滤膜,利用1-乙基-(3-二甲基氨基丙基)碳酰二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)方法将碱性氨基酸赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)接枝至超滤膜表面。实验结果表明,接枝氨基酸后水通量增加,静态蛋白吸附量降低,同时接枝组氨酸的超滤膜过滤牛血清白蛋白(BSA)3个循环后水通量恢复率达80%,表现出良好的抗污染性能。  相似文献   

19.
膜生物反应器(MBR)的膜污染问题严重制约了该工艺进一步快速的商业化推广,全面认识NaClO原位氧化清洗对MBR生物膜污染的影响,对于开发新型膜清洗技术及MBR工程优化具有重要意义。本文从微生物胞外关键组分空间分布角度综述了NaClO原位清洗对生物膜污染及生物絮凝的影响,并探讨了生物絮体重构机制及强化生物絮凝的相关措施。最后,本文从减缓膜污染的角度,对该领域未来的研究方向进行了论述。  相似文献   

20.
Three well-defined diblock copolymers of poly(methyl methacrylate-b-methacrylic acid)(P(MMA-b-MAA))were synthesized using atom transfer radical polymerization method and varying poly(methacrylic acid)(PMAA)chain lengths. These copolymers were blended with PVC to fabricate porous membranes via phase inversion process.Membrane morphologies were observed by scanning electron microscopy(SEM),and chemical composition changes of the membrane surfaces were measured by X-ray photoelectron spectroscopy(XPS).Static and dynamic protein adsorption experiments were used to evaluate antifouling properties of the blend membranes.It was found that,the blend membranes containing longer PMAA arm length showed lower static protein adsorption,higher water permeation flux and better protein solution flux recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号