首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A solvothermal route has been developed to synthesize K2V3O8 nanorods via the reduction of V2O5 using ethanol as the reducing agent as well as the solvent at 200°C. X-ray diffraction and selected area electron diffraction analysis revealed that the as-synthesized products are of tetragonal structure K2V3O8. Transmission electron spectroscopy image showed that the obtained K2V3O8 comprises rod-like nanocrystallites. The formation mechanism of K2V3O8 was studied.  相似文献   

2.
SrTiO3/BaZrO3 heterofilms as buffer layers are deposited on (0 0 1) MgO substrates by an RF-sputtering technique. The atomic structure and the defect configuration at the interfaces are investigated by means of aberration-corrected high-resolution transmission electron microscopy. At the BaZrO3/MgO interface, two types of interfacial structures, MgO/ZrO2-type and MgO/BaO-type, are observed. Antiphase boundaries and dislocations are found at the BaZrO3/MgO interface. The formation of these lattice defects is discussed in terms of film growth and structural imperfections of the substrate surface. At the SrTiO3/BaZrO3 interface, a high density of misfit dislocations is observed with different configurations. The formation of these dislocations contributes both to the relaxation of the large misfit strain and to stopping of the further propagation of lattice defects which are formed in the BaZrO3 layer into the SrTiO3 layer.  相似文献   

3.
Sessile drop experiments were performed on molten indium antimonide on clean quartz (fused silica) surfaces. A cell was constructed through which argon, helium, oxygen, hydrogen or a mixture of these was flowed at 600 °C. Some of the InSb was doped with 0.1% Ga. The surface tension σ of oxide-free molten InSb was smaller in Ar than in He, may have increased with increasing O2 in the gas, and was not influenced by Ga or H2. The contact angle θ on silica was higher in the presence of Ar, was lowered by O2, and was not influenced by H2 or Ga. The work of adhesion W and the surface energy σsv of the silica were higher in He than in Ar. The surface remained free of solid oxide only in flowing gas containing 0.8 ppm O2. This behavior is attributed to reaction of O2 at the surface of the melt to form In2O gas. When solid oxide formed on Ga-doped material, it was strongly enriched in Ga, with the Ga/In ratio increasing with the concentration of O2 in the gas.

Examination of published sessile-drop results for liquid metals and semiconductors on silica revealed that W and σsv were highest for reactive melts, in which SiO2 dissolves. For non-reactive melts, W and σsv were lower and θ higher in a gas than in a vacuum, regardless of whether the experiments had been carried out in sealed ampoules, a flowing gas, or dynamic vacuum. The implication is that the surface of silica was different in a vacuum than in a gas at 1 bar.  相似文献   


4.
Without the use of any extra surfactant or template, γ-MnOOH single crystalline nanowires were synthesized directly through the hydrothermal reaction between KMnO4 and toluene in distilled water at 180 °C for 24 h; and β-MnO2 single crystalline nanowires could be obtained just by calcination of the γ-MnOOH nanowires in air at 280 °C for 5 h. The as-prepared γ-MnOOH and β-MnO2 nanowires were characterized by X-ray powder diffraction, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, scanning electron microscope, transmission electron microscope, high-resolution transmission electron microscope and selected area electron diffraction.  相似文献   

5.
The growth of ZnO single crystals and crystalline films by solvothermal techniques is reviewed. Largest ZnO crystals of 3 inch in diameter are grown by a high-pressure medium-temperature hydrothermal process employing alkaline-metal mineralizer for solubility enhancement. Structural, thermal, optical and electrical properties, impurities and annealing effects as well as machining are discussed. Poly- and single-crystalline ZnO films are fabricated from aqueous and non-aqueous solutions on a variety of substrates like glass, (100) silicon, -Al2O3, Mg2AlO4, ScAlMgO4, ZnO and even some plastics at temperatures as low as 50 °C and ambient air conditions. Film thickness from a few nanometers up to some tens of micrometers is achieved. Lateral epitaxial overgrowth of thick ZnO films on Mg2AlO4 from aqueous solution at 90 °C was recently developed. The best crystallinity with a full-width half-maximum from the (0002) reflection of 26 arcsec has been obtained by liquid phase epitaxy employing alkaline-metal chlorides as solvent. Doping behavior (Cu, Ga, In, Ge) and the formation of solid solutions with MgO and CdO are reported. Photoluminescence and radioluminescence are discussed.  相似文献   

6.
BaWO4 crystals with different morphologies, such as nanosheets, nanobelts, flower-like, quadrangled plates and sheaves of dendrite, have been successfully synthesized via PVP as templates. Our result shows that reaction parameters, such as the concentration of PVP aqueous solutions, pH value of the starting solution and molar ratio of [Ba2+]/[WO42−] played important roles in the formation of BaWO4 crystal with different morphologies. It is obviously different between microwave irradiation heating and oil bath heating. The products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and electron diffraction.  相似文献   

7.
A novel approach for preparation of red-emitting europium-doped yttrium oxide phosphor (Y2O3:Eu) by using the bicontinuous cubic phase (BCP) process was reported in this paper. The BCP system was composed of anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and aqueous yttrium nitrate/europium nitrate solution. Energy dispersive spectrometer analysis revealed the homogeneous precipitation occurred in the BCP structure. Thermogravimetric analysis measurements indicated the precursor powder was europium-doped yttrium hydroxide, Y1−xEux(OH)3. Scanning electron microscopy micrographs showed the precursor powder had a primary size about 30 nm and narrow size distribution. After heat treatment in furnace above 700 °C for 4 h, high crystallinity Y2O3:Eu phosphors was obtained. However, the primary size of particles grew to 50–200 nm and the dense agglomerates with a size below 1 μm were formed. X-ray diffraction patterns indicated the crystal structure of precursor powders and Y2O3:Eu phosphors were amorphous and body-centered cubic structure, respectively. The photoluminescence analysis showed that the obtained Y2O3:Eu phosphor had a strong red emitting at 612 nm and the quenching started at a Eu concentration of 10 mol%. This study indicated that the BCP process could be used to prepare the highly efficient oxide-based phosphors.  相似文献   

8.
Bi20TiO32 in the form of nanocones are reported for the first time, which have been found during the formation of Bi2Ti2O7 nanocrystals. Bi20TiO32 nanocones were prepared by metalorganic decomposition technique. From X-ray patterns, it was found that Bi20TiO32 is a metastable phase, and can transform gradually into Bi2Ti2O7 phase with the annealing time increasing at a temperature of 550°C. The image of field emission scanning electron microscopy shows that the lengths of the nanocones are up to several micrometers and the diameters of cusps range from 20 to 200 nm. The studies of transmission electron microscopy show that the nanocones are crystalline Bi20TiO32. The growth mechanism of Bi20TiO32 nanocones has been proposed, which is similar to the vapor–liquid–solid growth mechanism.  相似文献   

9.
Clustered anatase phase TiO2 particles were uniformly formed on the surface of glass fibers by a liquid phase deposition (LPD) method at 60 °C using TiF4 and H3BO3 as the precursors. The clustered TiO2 particles deposited on the glass fibers and as a photocatalyst these particles not only have a larger surface area than TiO2 thin films, but also can avoid the disadvantages of using TiO2 powders encountered in air purification or water treatment. The photocatalytic activity of the sample was evaluated by the photocatalytic oxidation of nitrogen monoxide (NO) in the gaseous phase. The deposition conditions and chemical composition of the clustered TiO2 particles were discussed. It was found that the clustered TiO2 particles that formed on the glass fibers obviously showed photocatalytic activity without high-temperature calcination. A formation mechanism was proposed to account for the formation of TiO2 clustered morphology on the glass fibers.  相似文献   

10.
Homogeneous and transparent V2O5–TiO2 composite nanometer thin films were prepared on glass substrates by sol–gel processing and dip-coating technique. The films as well as the dried powder of bulk gel were characterized by different techniques like X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), atomic force microscope (AFM) and thermogravimetry–differential thermal analysis (TG–DTA). The hydrophilicity of the films was determined by measuring the water contact angles on the films. The results showed that the dopant of V2O5 on TiO2 thin films could produce a visible-light response to the films, and the introduction of V2O5 could suppress the structural phase transition and crystal growth of TiO2 crystal. Finally, the relationship between crystalline size and hydrophilicity under sunlight was investigated in this article.  相似文献   

11.
Anorthic SrHPO4 nanobelts and hexagonal Sr10O(PO4)6 nanorods were obtained by a simple hydrothermal method without adding any surfactant as template. The as-synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). TEM and HRTEM observations of the products revealed that the as-prepared SrHPO4 nanobelts and Sr10O(PO4)6 hexagonal nanorods are single crystals with their preferential growth direction along the normal of (1 0 0) and (0 0 1) planes, respectively.  相似文献   

12.
The single-crystalline β-wollastonite (β-CaSiO3) nanowires were prepared via a simple hydrothermal method, in the absence of any template or surfactant using cheap and simple inorganic salts as raw materials. Xonotlite [Ca6(Si6O17)(OH)2] nanowires were first obtained after hydrothermal treatment at a lower temperature of 200 °C for 24 h, and after being calcinated at 800 °C for 2 h, xonotlite nanowires completely transformed into β-wollastonite nanowires and the wire-like structure was preserved. The synthesized β-wollastonite nanowires had a diameter of 10–30 nm, and a length up to tens of micrometers, and the single-crystalline monoclinic parawollastonite structured β-wollastonite was identified by XRD with the space group of P21/a and cell constants of a=15.42 Å, b=7.325 Å, c=7.069 Å and β=95.38°. A possible growth mechanism of β-wollastonite nanowires was also proposed. The advantages of this method for the nanowire synthesis lie in the high yield, low temperature and mild reaction conditions, which will allow large-scale production at low cost.  相似文献   

13.
The chemical reactions and phases involved in the potential flux system of Li–Ca–N for the growth of bulk GaN crystals have been investigated under varying conditions. It is found that no preferential nitrification of Li or Ca by N2 in Li–Ca melts at 500 °C. Only the ternary compound LiCaN is identified in the Li–Ca–N system under the present experimental conditions. Static N2 pressures are found to enhance the formation of LiCaN compared to an N2 stream. LiCaN forms from two possible pathways: one is a modified metathesis chemical reaction represented by Li3N+Ca→LiCaN+2Li, and the other is a combination chemical reaction represented by Li3N+Ca3N2→3LiCaN. The formation of LiCaN by the metathesis reaction is thermodynamically favored over the other pathway. In addition, the formation of LiCaN might benefit from a slightly larger initial amount of Li3N compared with Ca or Ca3N2.  相似文献   

14.
Selective growth of WO2, W and WO3−x crystals from amorphous WO3 film by vacuum heating at 400–900°C was clarified. The grown WO3−x crystals were incommensurate structure based on crystallographic share structure. The growth process of WO2 crystal in the amorphous film was directly observed at high temperature in the electron microscope. The growth front of the WO2 crystal consumes WO3 microcrystallites with various orientations. The growth speed of the WO2 depended on WO3 microcrystallites orientation. The origin of the wavy growth front of WO2 was due to an orientation dependence of the WO3 microcrystallites.  相似文献   

15.
This paper analyzes the effect of polystyrensulfonic acid sodium salt (NaPSS), obtained by kinetic precipitation from solutions of polymers of molecular weight 245 000 and 38 000 g mol−1 in sodium bicarbonate (NaHCO3) itself precipitated from synthetic brine. Crystal size, shape and the additive adsorbed are reported. X shaped and hexagonal prisms crystals with different aspect ratios were obtained. The results show that with increasing polymer concentration the crystal size decreases, from 0.27 to 0.48 mm. Additionally, the higher molecular weight polymer shows both higher adsorption capacity and higher crystal habit modification. Crystal shape patterns were similar for both polymers; however, the higher molecular weight material induced changes at lower concentration. It was observed that the precipitation rate reached a minimum with increasing additive concentration.  相似文献   

16.
GaAsSb ternary epitaxial layers were grown on GaAs (0 0 1) substrate in various Sb4/As2 flux ratios by solid source molecular beam epitaxy. The alloy compositions of GaAs1−ySby were inferred using high-resolution X-ray symmetric (0 0 4) and asymmetric (2 2 4) glance exit diffraction. The non-equilibrium thermodynamic model is used to explain the different incorporation behavior between the Sb4 and As2 under the assumption that one incident Sb4 molecule produces one active Sb2 molecule. It is inferred that the activation energy of Sb4 dissociation is about 0.46 eV. The calculated results for the incorporation efficiency of group V are in good agreement with the experimental data.  相似文献   

17.
Nanocrystalline hydroxyapatite [HA, Ca10(PO4)6(OH)2] powders were synthesized by the mechanochemical–hydrothermal method using emulsion systems consisting of aqueous phase, petroleum ether (PE) as the oil phase and biodegradable Tomadol 23–6.5 as the nonionic surfactant. (NH4)2HPO4 and Ca(NO3)2 or Ca(OH)2 were used as the phosphorus and calcium sources, respectively. The calcium source and emulsion composition had significant effects on the stoichiometry, crystallinity, thermal stability, particle size and morphology of final products. Disperse HA crystals with a 160 nm length and aspect ratio of ca. 6 were formed in an emulsion system containing 10 wt% PE, 60 wt% water and 30 wt% surfactant. The HA particles had needle morphology with a specific surface area of . With this technique, HA nanopowders with specific surface areas in the range of 72– were produced.  相似文献   

18.
The MoS2 nanowires with diameters of 4 nm and lengths of 50 nm were synthesized by a hydrothermal method using 0.36 g MoO3 and 1.8 g Na2S as precursors in 0.4 mol/l HCl solution at 260°C. The products are characterized by XRD, XPS, TEM, HTEM and BET. Results show that the as-prepared MoS2 nanowires consist of 1–10 sulfide layers with BET surface areas of 107 m2/g. The possible reaction route and the formation mechanism of the MoS2 nanowires are discussed. The effects of exterior conditions such as pH value, temperature, concentration of precursors and additives on the particle size and morphology of MoS2 crystallites were investigated.  相似文献   

19.
Growth of dendritic cobalt nanocrystals at room temperature   总被引:3,自引:0,他引:3  
Dendritic cobalt nanocrystals have been synthesized by the reduction of Co2+ with hydrazine hydrate in ethanol via a room temperature solution synthetic route. The magnetic coercivity Hc of as-prepared cobalt dendrites came up to 500 Oe at room temperature. We chose different solvents to control the phases and morphologies of the cobalt products.  相似文献   

20.
Improving the property of ZnO nanorods using hydrogen peroxide solution   总被引:1,自引:0,他引:1  
Zinc oxide (ZnO) nanorod arrays made by the hydrothermal method were treated with hydrogen peroxide (H2O2) solution through two different approaches. One is to immerse ZnO nanorod sample into H2O2 solution. The other is a pre-treatment of spin-coating H2O2 solution on the seed layer before the growth of the ZnO nanorods. In the first approach, we found that the ultraviolet (UV) emission peak of the ZnO nanorod photoluminescence (PL) spectra was strongly dependent on the immersion time. In the second approach, the H2O2 solution influences not only the quality of the seed layer, but also the amount of the oxygen interstitial defects in the ZnO nanorods grown thereon. As a result, the UV emission intensity from the ZnO nanorods is enhanced almost five times. The ZnO nanorod arrays with few oxygen interstitial defects are prepared by the hydrogen peroxide treatment and expected to enable the fabrication of optoelectronic device with excellent performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号