共查询到17条相似文献,搜索用时 94 毫秒
1.
近红外漫反射光谱检测赣南脐橙可溶性固形物的研究 总被引:3,自引:1,他引:3
研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法。以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型。实验结果为: 在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791。实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性。 相似文献
2.
梨可溶性固形物含量的在线近红外光谱检测 总被引:11,自引:0,他引:11
应用近红外透射检测技术在线检测梨的可溶性固形物(SSC)。在实验台上以0.5 m·s-1的速度,300 W的光照强度,采用半透射方式检测梨的光谱。实验采用的梨样品为187个,其中147个样品为校正集,40个样品为预测集,应用偏最小二乘回归(PLS)和主成分回归(PCR)建立梨可溶性固形物的在线预测模型。选取550~700 nm, 700~850 nm, 550~850 nm为建模波段范围,发现无论对于PLS还是PCR,都是550~850 nm波段的建模结果好。本实验还研究对比不同的光谱预处理方法(光谱平滑,一阶微分,二阶微分等)对预测模型性能的影响,其中5点S-G(Savitzky-Golay)光谱平滑能有效地提高光谱的信噪比,改善模型预测精度,而一阶微分、二阶微分对模型性能改善基本上没有影响;最好的预测模型相关系数r=0.948 8, 校正标准差RMSEC=0.236,预测标准差RMSEP=0.548。结果表明:PLS模型预测性能较好,梨可溶性固形物的在线检测具有可行性。 相似文献
3.
基于近红外漫反射光谱无损检测梨可溶性固形物的光强影响探究 总被引:2,自引:0,他引:2
通过设置四种不同的光源强度研究光强对近红外漫反射无损检测梨可溶性固形物的影响,对四种类别光强的光谱定性分析显示四类光谱差异微小,肉眼几乎无法辨别。在进一步的定量分析中,通过主成分分析、逐步线性回归分析以及偏最小二乘法分析的比较,主成分分析(r值跨度:0.253~0.606;RMSEC值跨度:0.549~0.614;RMSEP值跨度:0.455~0.752)与逐步线性回归分析(r值跨度:0.249~0.551;RMSEC值跨度:0.536~0.624;RMSEP值跨度:0.646~0.734)得到的模型较差。通过对光谱进行一阶求导和二阶求导预处理,主成分分析与逐步线性回归分析建模结果仍不理想。通过二阶求导预处理,偏最小二乘法所建的模型得到优化,其中相关系数r值跨度为0.947~0.970,混合模型的相关系数r值达到了0.95 7,分析结果表明光强对梨的近红外漫反射光谱无损检测可溶性固形物的影响差异不大,为光谱仪的田间作业奠定了基础。 相似文献
4.
可溶性固形物和碰伤是影响番茄品质的两个主要因素。研究的目的是探索可见近红外漫透射光谱同时在线检测番茄碰伤和可溶性固形物的可行性。在单通道送果速度5个每秒条件下,采集番茄近红外漫透射光谱。对比分析碰伤与正常番茄样品的近红外漫透射光谱特性,结果表明,碰伤与正常番茄样品的近红外漫透射光谱在光强上存在明显差异,碰伤果光强要强于正常果,其原因可能是碰伤后果肉变软,透光性变强;在650和675 nm处碰伤果比正常果要多两个吸收峰,可能是碰伤后,番茄表皮颜色发生变化所致。选取贡献率占比最多的前三个主成数,对正常果与碰伤果近红外漫透射光谱主成分定性分析,正常果与碰伤果不能有效聚类,故近红外漫透射光谱主成分定性分析效果不明显,需选择建立高维近红外漫透射光谱定性判别模型。故建立了碰伤番茄样品的近红外漫透射光谱偏最小二乘定性判别模型,误判率为0%,能正确判别碰伤果,故选用碰伤番茄样品的近红外漫透射光谱偏最小二乘定性判别模型作为番茄碰伤果在线剔除分选模型。通过对未参与建模的样品进行验证,能正确识别出碰伤果。经近红外漫透射光谱偏最小二乘定性判别模型剔除碰伤果后,按照可溶性固形物指标进行分级。分别使用全部波段和606~850 nm的波段进行建模预处理,且对全部波段和606~850 nm波段光谱进行2阶导数预处理,前后平滑设为9,利用连续投影算法与遗传算法优选可溶性固形物的光谱建模变量,对比发现,利用未经算法筛选过的606~850 nm波段光谱变量进行建模,效果最好,建立了可溶性固形物在线检测模型,预测集均方根误差为0.43 Brix°。采用未参与建模的样品进行碰伤和可溶性固形物同时在线检测验证,碰伤样品的分选准确率达96%,可溶性固形物样品的分选准确率达91%。表明:番茄碰伤和可溶性固形物近红外漫透射光谱同时在线检测是可行的。 相似文献
5.
近红外光谱技术定量测定杨梅汁可溶性固形物 总被引:2,自引:1,他引:2
采用近红外光谱分析技术对浙江省不同产地的杨梅汁进行了光谱测定和定量分析,通过计算样品的杠杆值、学生残差和马氏距离来判别异常样品,采用偏最小二乘法(PLS)对杨梅汁的可溶性固形物进行建模分析,选取不同的分辨率和波段范围对光谱进行有效的信息提取和分析,确定了最佳的回归因子数和用于定量分析的最优波段范围。结果显示: 杨梅汁样品中有一个为异常样品,在建模时予以剔除;用于杨梅汁可溶性固形物检测的最佳分辨率和最优波段分别是4 cm-1和4 000~12 267.46 cm-1,最佳的回归因子数是8,该PLS模型的相关系数为0.957 85,校正均方根误差(RMSEC)、预测均方根误差(RMSEP)和交互验证标准偏差(RMSECV)分别是0.431,0.925和1.07°Brix。研究表明近红外光谱检测技术能用于杨梅汁可溶性固形物的定量分析。 相似文献
6.
杏贮藏期间可溶性固形物和硬度的近红外光谱检测 总被引:2,自引:0,他引:2
以杏为材料,研究其贮藏期间可溶性固形物和硬度的近红外漫反射无损检测模型的建立方法。研究发现,定标建模最少样品量为100个。对于可溶性固形物,刚收获样品的校正模型对各贮藏阶段的预测效果均较好,决定系数(r2p)接近0.9、预测均方根误差(RMSEP)在0.6左右及相对分析误差(RPDp)达2.5以上;而且混合阶段模型的预测效果均优于采收及不同贮藏阶段的独立模型,r2p和RPDp分别达0.9和3.0以上、RMSEP在0.3—0.5之间。对于硬度,各阶段独立模型仅能粗略预测相应贮藏时期的样品,而混合阶段模型对各贮藏时期的样品均能实现快速分析,rp2和RMSEP分别在0.8和1.0左右、RPDp达2.0。结果表明近红外漫反射光谱可用于及时评价杏贮藏期间可溶性固形物和硬度的变化。 相似文献
7.
SPXY算法的西瓜可溶性固形物近红外光谱检测 总被引:3,自引:0,他引:3
可溶性固形物(SSC)是一种综合参数,主要包括糖、酸、纤维素、矿物质等成分,对评价果实成熟度和品质具有重要意义,影响果实口感、风味及货架期。西瓜可溶性固形物含量的无损快速检测对西瓜成熟度的确定、贮藏及运输过程中西瓜内部品质监控具有十分重要的意义,有助于提高西瓜生产效益和市场竞争力。在西瓜可溶性固形物含量的快速无损近红外光谱检测中,近红外漫透射的方式所需光源的能量大,同时大功率透射会对水果的内部品质产生影响;采用近红外漫反射方式的研究较少,但漫反射采集所需的能量小,有助于实现仪器小型便携化,成本低,同时避免透射引起的水果品质变化。以小型西瓜为研究对象,利用JDSU便携式近红外光谱仪采集西瓜样品瓜梗、瓜脐、赤道部位的近红外反射光谱,在976,1 186和1 453 nm附近有明显的吸收,利用偏最小二乘回归定量分析方法建立西瓜可溶性固形物的近红外光谱无损预测模型。首先,采用光谱-理化值共生距离(SPXY)算法对西瓜不同检测部位的样品集进行划分,以可溶性固形物含量为y变量,光谱为x变量,利用两种变量同时计算样品间距离,以保证最大程度表征样本分布,有效地覆盖多维向量空间,增加样本间的差异性和代表性,提高模型稳定性。将西瓜样品划分为51个校正集和15个预测集,校正集样本的SSC含量涵盖了预测集样本的SSC含量范围,且变异系数均小于9%,样品集划分合理,有助于建立稳健可靠的预测模型。其次,对比分析西瓜瓜梗、瓜脐、赤道检测部位的近红外反射光谱与可溶性固形物含量之间的定量模型的预测精度,结果得出西瓜赤道部位的反射光谱与可溶性固形物含量相关性较高,预测效果较好,预测集相关系数为0.629,预测集均方根误差为0.49%。对于不同检测部位获取的光谱信息所建立的近红外光谱SSC预测模型的精度问题,一方面与光谱的采集方式有关,另一方面与西瓜的产地、品种、成熟期等因素引起的其性状上的差异有关。在模型建立过程中根据实际情况确定西瓜的检测部位。最后,为提高西瓜赤道部位近红外反射光谱与可溶性固形物含量之间的预测模型精度,采用光谱预处理方法进行优化,结果得出经标准归一化预处理后,建立的偏最小二乘回归预测模型效果最佳,预测集相关系数为0.864,预测集均方根误差为0.33%,模型相关性较好,预测精度得到了很大提升。研究结果表明,近红外反射光谱检测小型西瓜赤道部位能很好预测其可溶性固形物含量,为实际生产中近红外光谱无损快速检测西瓜可溶性固形物含量及小型便携式仪器研发提供了技术储备。 相似文献
8.
西瓜检测部位差异对近红外光谱可溶性固形物预测模型的影响 总被引:1,自引:0,他引:1
西瓜可溶性固形物含量的无损检测对提升其内部品质十分重要。为实现近红外光谱对小型西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对预测模型的影响,以“京秀”西瓜为研究对象,分别采集赤道、瓜脐和瓜梗三部位的漫透射光谱信息,利用偏最小二乘算法(PLS)建立并比较单一检测部位和混合所有检测部位的西瓜可溶性固形物近红外光谱预测模型,并分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对西瓜可溶性固形物近红外光谱变量进行特征波长筛选。结果显示,相比于单一检测部位的模型,混合所有检测部位的校正集样本建立的模型取得了较优的预测结果。同时,利用CARS算法筛选的42个特征波长变量建模,对三种检测部位预测集样本的预测结果分别为赤道RP=0.892和RMSEP= 0.684 °Brix,瓜脐RP=0.905和RMSEP= 0.629 °Brix,瓜梗RP=0.899和RMSEP= 0.721 °Brix。模型得到了很大的简化,且预测精度较高。比较发现,利用SPA算法筛选的19个特征波长变量所建模型的预测精度较低。利用三种检测部位的西瓜样本建立的PLS混合预测模型,结合CARS算法进行有效特征波长变量筛选,可提高西瓜可溶性固形物预测模型的精度,实现西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对近红外光谱预测模型的影响。结果为今后开发便携式设备检测西瓜表面各部位可溶性固形含量提供参考依据。 相似文献
9.
近红外光谱检测蜂蜜中可溶性固形物含量和水分的应用研究 总被引:1,自引:0,他引:1
提出了一种利用近红外光谱技术定量分析蜂蜜中可溶性同形物含量(SSC)的新方法,同时对蜂蜜中的水分也进行了研究.在不同光谱范围内,通过对原始光谱的不同预处理,用偏最小二乘法分别建立了SSC和水分的近红外透反射光谱校正模型,所有模型都有高的的预测精度和水分的最优模型都为在全谱范围内,光谱预处理采用Norris平滑+一阶微分+多元信号校正,SSC模型的交互验证决定系数(RCV2)、交互验证误差均方根(RMSECV)、验证集决定系数(RP2)、验证误差均方根(RMSEP).SSC模型分别为0.998 6,0.190,0.998 5和0.127,水分模型分别为0.998 4,0.187.0.998 6和0.125.近红外光谱能实现蜂蜜中SSC和水分的准确测定.水分模型预测结果略好于相关文献的报道. 相似文献
10.
基于SiPLS算法的近红外光谱检测梨可溶性固形物含量 总被引:3,自引:0,他引:3
为了提高近红外光谱技术在梨的可溶性固形物含量(SSC)检测中的精度和稳定性,对采集的原始光谱进行标准归一化(SNV)预处理,采用联合区间偏最小二乘法(SiPLS)建立了SSC的预测模型;通过交互验证法确定了模型的主成分因子数,以预测时的相关系数(Rp)和预测均方根误差(RMSEP)作为评价指标对模型预测结果进行了分析,并与经典偏最小二乘(PLS)模型、间隔偏最小二乘(iPLS)模型进行了比较.结果表明,利用SiPLS所建的预测模型的最优组合包含21个光谱区间并联合4个子区间和15个主成分因子,其预测集的相关系数和预测均方根误差分别为0.9633和0.203;说明利用近红外光谱结合SiPLS算法可以准确、无损检测梨中可溶性固形物含量. 相似文献
11.
不同贮藏期水蜜桃硬度及糖度的检测研究 总被引:1,自引:0,他引:1
糖度和硬度作为水蜜桃的两个重要指标,决定其内部品质。在运输或售卖期间,水蜜桃果内水分流失,表面开始松软进而腐烂,内部品质发生变化。研究旨在探讨可见/近红外光谱预测水蜜桃不同贮藏期糖度和硬度的可行性,进一步预测水蜜桃的最佳贮藏期。采用漫透射和漫反射方式采集4个贮藏阶段的水蜜桃光谱,并测量糖度和硬度。分析了4个阶段水蜜桃的平均光谱,光谱强度随着贮藏天数增加而不断提高,且在650~680 nm区域内受果皮颜色及色素的变化产生波峰偏移。同时,分析了糖度和硬度的变化,糖度在贮藏期间逐渐提高,硬度在贮藏期间快速下降,最终糖度增加了3.31%,硬度下降了58.8%。采用多元散射校正、S-G卷积平滑、归一化处理及基线校正等预处理方法来减少噪声和误差对光谱的影响,并使用无信息变量消除(UVE)和连续投影算法(SPA)筛选特征波长,最后利用偏最小二乘回归(PLS)分别建立糖度和硬度的预测模型。分析糖度、硬度的PLS回归系数与平均光谱的波形发现,糖度的高回归系数分布在光谱多处,而硬度的该系数均在波峰波谷附近。SPA和UVE筛选的特征波长建立的糖度模型效果不佳,而硬度模型效果良好。结果表明,漫透射和漫反射检测方式下,糖度的最佳预测相关系数(Rp)及预测均方根误差(RMSEP)分别为0. 886,0.727和0.820,1.003,预处理方法分别是多元散射校正、平滑窗口宽度为3的S-G卷积平滑。此外,漫透射建立的硬度SPA-PLS模型,选用15个光谱变量,得到的Rp和RMSEP为0.798和0.976;而漫反射建立的UVE-PLS模型,选用113个光谱变量,得到的Rp和RMSEP为0.841和0.829。可以看出,漫透射方式预测水蜜桃贮藏期间的糖度更佳,而漫反射预测硬度更佳。利用可见/近红外光谱所建立的糖度和硬度预测模型,能够可靠地预测水蜜桃贮藏期内糖度和硬度的变化,对指导采摘、售卖时间和减少腐烂具有一定的参考价值。 相似文献
12.
通过提取采后不同时期的莲子、莲仁的近红外漫反射光谱特征,以莲子的可溶性固形物(SSC)和干物质含量(DM)为指标进行定量和定性分析。利用偏最小二乘回归(PLSR)分析和距离判别分析(DA)计算所得的结果表明:SSC和DM含量与莲子、莲仁的吸收光谱特征具有明显相关。莲子SSC、DM的PLSR模型在5 941~12 480 cm-1谱区综合性能较好,预测相关系数(r1)分别为0.74和82,校正相关系数(r2)分别为0.82和0.84,留一交互相关系数(r3)分别为0.72和0.71。莲仁SSC的PLSR模型在7 891~9 310 cm-1谱区综合性能较好,r1为0.79,r2为0.84,r3为0.77。DM的PLSR模型在全光谱的综合性能较好,r1为0.92,r2为0.89,r3为0.82。莲子在5 400~7 885 cm-1谱区的判别性能较好,正确率达84.2%,而莲仁在9 226~12 480 cm-1谱区的判别性能较好,正确率达90.8%。对不同年份和有膜有芯的干莲仁进行DA判别的精度可达98.9%。研究表明近红外检测技术可用于莲子和莲仁的SSC和DM含量的定量分析及储存期的定性判别,还可对不同年份和有膜有芯的干莲仁进行判别。 相似文献
13.
利用近红外光谱结合偏最小二乘法实现对不同品牌盐酸左西替利嗪片剂有效成分的定量分析。经内部交叉验证,确定最佳波数范围和光谱预处理方法,以及最佳主成分数,建立最优PLS校正模型。对验证集样品浓度进行预测,得到均方根误差RMSECV、决定系数R2分别为0.276和0.974。该方法能够用于不同厂家盐酸左西替利嗪片的快速定量分析,是一种有效的药品快速检验技术。 相似文献
14.
成忠 《光谱学与光谱分析》2007,27(6):1127-1130
针对近红外光谱数据局部效应显著,变量个数多,且彼此间常存在严重的复共线性,并与样品组分含量呈非线性关系,构建了一种双层非线性偏最小二乘回归 (DNPLSR)算法。它将非线性回归和偏最小二 乘(PLS)相结合,先在外层由PLS从样本数据中提取成分,并实现每对成分间的非线性映射,再在内层实施PLS算法,将外层因变量成分的拟合误差反馈计算转换权向量的增量,进一步修正转换权向量,以使外层所提取的成分对因变量具有更优的解释能力。最后,将该法应用于80个谷物样品的水组分含量与其近红外光谱的定量关系建模,效果良好,显示出很强的学习能力,所建模型的预报性能也优于其他方法。 相似文献
15.
研究利用近红外(924~1 720 nm)反射光谱预测了洋葱的可溶性固体物含量。实验选取了三种不同产地和不同采收期的洋葱为样本(268)。在重复采集光谱数据之后,榨取对应光谱采集处洋葱块汁,测定可溶性固体物参考值。研究对比了Savitzky-Golay平滑、散射校正和微分处理等预处理方法,同时基于偏最小二乘回归方法建立了统计模型。结果表明,带S-G平滑的微分处理在平滑窗口为32,跨度为10时效果最佳。一阶微分比二阶微分的预处理效果要好,预测复相关系数R2为0.87,均方根误差RMSEP为2.42 °Brix。对比显示,无平滑处理光谱数据散射校正预处理得到的结果最好,预测复相关系数R2为0.88(RMSEP=2.31 °Brix)。采用交叉验证得到的PLSR模型预测复相关系数R2为0.90,RMSEP为1.84 °Brix,其相对分析误差RPD为3。说明加散射校正处理的近红外反射光谱可用于洋葱的可溶性固体物检测。 相似文献
16.
利用可见-近红外光谱技术联合变量选择新方法对南丰蜜桔的可溶性固形物(SSC)进行快速无损检测研究,以简化南丰蜜桔SSC预测模型和提高预测模型性能。试验共采用300个南丰蜜桔样本,校正集、验证集及预测集样本分别为150,75和75个。采用QualitySpec型光谱仪在350~1 000 nm波段范围内采集样本光谱,利用无信息变量消除(UVE)剔除无用信息波长变量,再采用独立成分分析(ICA)提取光谱的独立成分,最后应用最小二乘支持向量机(LS-SVM)建立南丰蜜桔的SSC预测模型,并利用未参与建模的预测集样本对模型进行评价。研究结果表明,可见-近红外光谱技术联合UVE-ICA- LS-SVM对南丰蜜桔的SSC检测精度高。UVE-ICA可以有效剔除无用信息波长变量,提取特征光谱信息,简化预测模型及提高预测模型性能。UVE-ICA- LS-SVM所建立的南丰蜜桔SSC预测模型性能优于PLS,PCA-LS-SVM及ICA-LS-SVM预测模型,其校正集、验证集及预测集的决定系数和均方根误差分别为0.978,0.230%,0.965,0.301%及0.967,0.292%。 相似文献
17.
特征变量优选在苹果可溶性固形物近红外便携式检测中的应用 总被引:5,自引:0,他引:5
为实现苹果可溶性固形物(SSC)的便携式快速检测,利用环形光纤探头和微型光谱仪搭建便携式苹果可溶性固形物光谱采集系统,结合无信息变量消除(UVE)、遗传算法(GA)、竞争性自适应加权(CARS)算法筛选基于偏最小二乘(PLS)的苹果可溶性固形物的近红外光谱特征波长。另外,采用反向区间最小二乘支持向量机(BiLS-SVM)和GA算法优选基于LS-SVM的特征波长变量,分别建立所选特征波长和全波段的PLS模型和LS-SVM模型。试验结果表明,经过GA-CARS算法从全波段1 512个波长中筛选出的50个特征波长建立的PLS模型效果最好,其预测相关系数和预测均方根误差分别为0.962和0.403°Brix。利用该检测装置结合GA-CARS筛选的特征波长,可有效简化苹果可溶性固形物近红外便携式检测模型并提高模型的预测精度,为进一步构建便携式苹果可溶性固形物检测设备奠定了基础。 相似文献