共查询到18条相似文献,搜索用时 46 毫秒
1.
近红外漫反射光谱检测赣南脐橙可溶性固形物的研究 总被引:4,自引:1,他引:3
研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法。以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型。实验结果为: 在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791。实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性。 相似文献
2.
梨可溶性固形物含量的在线近红外光谱检测 总被引:11,自引:0,他引:11
应用近红外透射检测技术在线检测梨的可溶性固形物(SSC)。在实验台上以0.5 m·s-1的速度,300 W的光照强度,采用半透射方式检测梨的光谱。实验采用的梨样品为187个,其中147个样品为校正集,40个样品为预测集,应用偏最小二乘回归(PLS)和主成分回归(PCR)建立梨可溶性固形物的在线预测模型。选取550~700 nm, 700~850 nm, 550~850 nm为建模波段范围,发现无论对于PLS还是PCR,都是550~850 nm波段的建模结果好。本实验还研究对比不同的光谱预处理方法(光谱平滑,一阶微分,二阶微分等)对预测模型性能的影响,其中5点S-G(Savitzky-Golay)光谱平滑能有效地提高光谱的信噪比,改善模型预测精度,而一阶微分、二阶微分对模型性能改善基本上没有影响;最好的预测模型相关系数r=0.948 8, 校正标准差RMSEC=0.236,预测标准差RMSEP=0.548。结果表明:PLS模型预测性能较好,梨可溶性固形物的在线检测具有可行性。 相似文献
3.
基于近红外漫反射光谱无损检测梨可溶性固形物的光强影响探究 总被引:2,自引:0,他引:2
通过设置四种不同的光源强度研究光强对近红外漫反射无损检测梨可溶性固形物的影响,对四种类别光强的光谱定性分析显示四类光谱差异微小,肉眼几乎无法辨别。在进一步的定量分析中,通过主成分分析、逐步线性回归分析以及偏最小二乘法分析的比较,主成分分析(r值跨度:0.253~0.606;RMSEC值跨度:0.549~0.614;RMSEP值跨度:0.455~0.752)与逐步线性回归分析(r值跨度:0.249~0.551;RMSEC值跨度:0.536~0.624;RMSEP值跨度:0.646~0.734)得到的模型较差。通过对光谱进行一阶求导和二阶求导预处理,主成分分析与逐步线性回归分析建模结果仍不理想。通过二阶求导预处理,偏最小二乘法所建的模型得到优化,其中相关系数r值跨度为0.947~0.970,混合模型的相关系数r值达到了0.95 7,分析结果表明光强对梨的近红外漫反射光谱无损检测可溶性固形物的影响差异不大,为光谱仪的田间作业奠定了基础。 相似文献
4.
可溶性固形物和碰伤是影响番茄品质的两个主要因素。研究的目的是探索可见近红外漫透射光谱同时在线检测番茄碰伤和可溶性固形物的可行性。在单通道送果速度5个每秒条件下,采集番茄近红外漫透射光谱。对比分析碰伤与正常番茄样品的近红外漫透射光谱特性,结果表明,碰伤与正常番茄样品的近红外漫透射光谱在光强上存在明显差异,碰伤果光强要强于正常果,其原因可能是碰伤后果肉变软,透光性变强;在650和675 nm处碰伤果比正常果要多两个吸收峰,可能是碰伤后,番茄表皮颜色发生变化所致。选取贡献率占比最多的前三个主成数,对正常果与碰伤果近红外漫透射光谱主成分定性分析,正常果与碰伤果不能有效聚类,故近红外漫透射光谱主成分定性分析效果不明显,需选择建立高维近红外漫透射光谱定性判别模型。故建立了碰伤番茄样品的近红外漫透射光谱偏最小二乘定性判别模型,误判率为0%,能正确判别碰伤果,故选用碰伤番茄样品的近红外漫透射光谱偏最小二乘定性判别模型作为番茄碰伤果在线剔除分选模型。通过对未参与建模的样品进行验证,能正确识别出碰伤果。经近红外漫透射光谱偏最小二乘定性判别模型剔除碰伤果后,按照可溶性固形物指标进行分级。分别使用全部波段和606~850 nm的波段进行建模预处理,且对全部波段和606~850 nm波段光谱进行2阶导数预处理,前后平滑设为9,利用连续投影算法与遗传算法优选可溶性固形物的光谱建模变量,对比发现,利用未经算法筛选过的606~850 nm波段光谱变量进行建模,效果最好,建立了可溶性固形物在线检测模型,预测集均方根误差为0.43 Brix°。采用未参与建模的样品进行碰伤和可溶性固形物同时在线检测验证,碰伤样品的分选准确率达96%,可溶性固形物样品的分选准确率达91%。表明:番茄碰伤和可溶性固形物近红外漫透射光谱同时在线检测是可行的。 相似文献
5.
杏贮藏期间可溶性固形物和硬度的近红外光谱检测 总被引:2,自引:0,他引:2
以杏为材料,研究其贮藏期间可溶性固形物和硬度的近红外漫反射无损检测模型的建立方法。研究发现,定标建模最少样品量为100个。对于可溶性固形物,刚收获样品的校正模型对各贮藏阶段的预测效果均较好,决定系数(r2p)接近0.9、预测均方根误差(RMSEP)在0.6左右及相对分析误差(RPDp)达2.5以上;而且混合阶段模型的预测效果均优于采收及不同贮藏阶段的独立模型,r2p和RPDp分别达0.9和3.0以上、RMSEP在0.3—0.5之间。对于硬度,各阶段独立模型仅能粗略预测相应贮藏时期的样品,而混合阶段模型对各贮藏时期的样品均能实现快速分析,rp2和RMSEP分别在0.8和1.0左右、RPDp达2.0。结果表明近红外漫反射光谱可用于及时评价杏贮藏期间可溶性固形物和硬度的变化。 相似文献
6.
近红外光谱技术定量测定杨梅汁可溶性固形物 总被引:2,自引:1,他引:2
采用近红外光谱分析技术对浙江省不同产地的杨梅汁进行了光谱测定和定量分析,通过计算样品的杠杆值、学生残差和马氏距离来判别异常样品,采用偏最小二乘法(PLS)对杨梅汁的可溶性固形物进行建模分析,选取不同的分辨率和波段范围对光谱进行有效的信息提取和分析,确定了最佳的回归因子数和用于定量分析的最优波段范围。结果显示: 杨梅汁样品中有一个为异常样品,在建模时予以剔除;用于杨梅汁可溶性固形物检测的最佳分辨率和最优波段分别是4 cm-1和4 000~12 267.46 cm-1,最佳的回归因子数是8,该PLS模型的相关系数为0.957 85,校正均方根误差(RMSEC)、预测均方根误差(RMSEP)和交互验证标准偏差(RMSECV)分别是0.431,0.925和1.07°Brix。研究表明近红外光谱检测技术能用于杨梅汁可溶性固形物的定量分析。 相似文献
7.
吴虹璋;蔡红星;任玉;王婷婷;周建伟;李栋梁;曲冠男 《光散射学报》2024,(1):44-51
葡萄中可溶性固形物是评价葡萄成熟度的重要指标,本文探究了基于可见/近红外光谱技术对多个品种葡萄(红提、巨峰、辽峰)可溶性固形物(Soluble Solid Content, SSC)含量进行定量分析。分别采集了三个葡萄品种在550~960 nm波长范围内的透射光谱数据,采用Savitzky-Golay卷积平滑(S-G)、标准正态变换(Standard Normal Variate, SNV)、小波变换(WT)、一阶求导+S-G卷积平滑组合(1stDer+S-G)预处理方法,对比分析出最适合各个品种的预处理方法;然后在最佳的预处理方法下采用连续投影算法(SPA)、竞争性自适应重加权(CARS)对光谱进行特征波长选择;结合化学计量学方法分别建立多品种与单一品种的偏最小二乘回归(PLSR)、BP神经网络SSC含量无损预测模型。结果表明,基于BP-SPA建立的SSC含量模型最优,多个品种通用SSC含量预测模型的预测集相关系数(Rp2)为0.85,表明基于可见/近红外光谱技术对多个葡萄品种SSC含量无损检测是可行的。 相似文献
8.
SPXY算法的西瓜可溶性固形物近红外光谱检测 总被引:3,自引:0,他引:3
可溶性固形物(SSC)是一种综合参数,主要包括糖、酸、纤维素、矿物质等成分,对评价果实成熟度和品质具有重要意义,影响果实口感、风味及货架期。西瓜可溶性固形物含量的无损快速检测对西瓜成熟度的确定、贮藏及运输过程中西瓜内部品质监控具有十分重要的意义,有助于提高西瓜生产效益和市场竞争力。在西瓜可溶性固形物含量的快速无损近红外光谱检测中,近红外漫透射的方式所需光源的能量大,同时大功率透射会对水果的内部品质产生影响;采用近红外漫反射方式的研究较少,但漫反射采集所需的能量小,有助于实现仪器小型便携化,成本低,同时避免透射引起的水果品质变化。以小型西瓜为研究对象,利用JDSU便携式近红外光谱仪采集西瓜样品瓜梗、瓜脐、赤道部位的近红外反射光谱,在976,1 186和1 453 nm附近有明显的吸收,利用偏最小二乘回归定量分析方法建立西瓜可溶性固形物的近红外光谱无损预测模型。首先,采用光谱-理化值共生距离(SPXY)算法对西瓜不同检测部位的样品集进行划分,以可溶性固形物含量为y变量,光谱为x变量,利用两种变量同时计算样品间距离,以保证最大程度表征样本分布,有效地覆盖多维向量空间,增加样本间的差异性和代表性,提高模型稳定性。将西瓜样品划分为51个校正集和15个预测集,校正集样本的SSC含量涵盖了预测集样本的SSC含量范围,且变异系数均小于9%,样品集划分合理,有助于建立稳健可靠的预测模型。其次,对比分析西瓜瓜梗、瓜脐、赤道检测部位的近红外反射光谱与可溶性固形物含量之间的定量模型的预测精度,结果得出西瓜赤道部位的反射光谱与可溶性固形物含量相关性较高,预测效果较好,预测集相关系数为0.629,预测集均方根误差为0.49%。对于不同检测部位获取的光谱信息所建立的近红外光谱SSC预测模型的精度问题,一方面与光谱的采集方式有关,另一方面与西瓜的产地、品种、成熟期等因素引起的其性状上的差异有关。在模型建立过程中根据实际情况确定西瓜的检测部位。最后,为提高西瓜赤道部位近红外反射光谱与可溶性固形物含量之间的预测模型精度,采用光谱预处理方法进行优化,结果得出经标准归一化预处理后,建立的偏最小二乘回归预测模型效果最佳,预测集相关系数为0.864,预测集均方根误差为0.33%,模型相关性较好,预测精度得到了很大提升。研究结果表明,近红外反射光谱检测小型西瓜赤道部位能很好预测其可溶性固形物含量,为实际生产中近红外光谱无损快速检测西瓜可溶性固形物含量及小型便携式仪器研发提供了技术储备。 相似文献
9.
近红外光谱检测蜂蜜中可溶性固形物含量和水分的应用研究 总被引:1,自引:0,他引:1
提出了一种利用近红外光谱技术定量分析蜂蜜中可溶性同形物含量(SSC)的新方法,同时对蜂蜜中的水分也进行了研究.在不同光谱范围内,通过对原始光谱的不同预处理,用偏最小二乘法分别建立了SSC和水分的近红外透反射光谱校正模型,所有模型都有高的的预测精度和水分的最优模型都为在全谱范围内,光谱预处理采用Norris平滑+一阶微分+多元信号校正,SSC模型的交互验证决定系数(RCV2)、交互验证误差均方根(RMSECV)、验证集决定系数(RP2)、验证误差均方根(RMSEP).SSC模型分别为0.998 6,0.190,0.998 5和0.127,水分模型分别为0.998 4,0.187.0.998 6和0.125.近红外光谱能实现蜂蜜中SSC和水分的准确测定.水分模型预测结果略好于相关文献的报道. 相似文献
10.
西瓜检测部位差异对近红外光谱可溶性固形物预测模型的影响 总被引:1,自引:0,他引:1
西瓜可溶性固形物含量的无损检测对提升其内部品质十分重要。为实现近红外光谱对小型西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对预测模型的影响,以“京秀”西瓜为研究对象,分别采集赤道、瓜脐和瓜梗三部位的漫透射光谱信息,利用偏最小二乘算法(PLS)建立并比较单一检测部位和混合所有检测部位的西瓜可溶性固形物近红外光谱预测模型,并分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对西瓜可溶性固形物近红外光谱变量进行特征波长筛选。结果显示,相比于单一检测部位的模型,混合所有检测部位的校正集样本建立的模型取得了较优的预测结果。同时,利用CARS算法筛选的42个特征波长变量建模,对三种检测部位预测集样本的预测结果分别为赤道RP=0.892和RMSEP= 0.684 °Brix,瓜脐RP=0.905和RMSEP= 0.629 °Brix,瓜梗RP=0.899和RMSEP= 0.721 °Brix。模型得到了很大的简化,且预测精度较高。比较发现,利用SPA算法筛选的19个特征波长变量所建模型的预测精度较低。利用三种检测部位的西瓜样本建立的PLS混合预测模型,结合CARS算法进行有效特征波长变量筛选,可提高西瓜可溶性固形物预测模型的精度,实现西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对近红外光谱预测模型的影响。结果为今后开发便携式设备检测西瓜表面各部位可溶性固形含量提供参考依据。 相似文献
11.
苹果可溶性固形物便携式检测实验研究 总被引:1,自引:0,他引:1
为实现苹果可溶性固形物的便携式快速检测,搭建了以STS光谱仪和自制样品杯作为光谱检测装置的苹果可溶性固形物便携式检测平台。采用自行设计的检测平台采集了苹果的近红外漫反射光谱,对比分析了不同的光照角度、光源与探头距离对光谱响应特性的影响,建立了苹果可溶性固形物偏最小二乘模型(PLS)和最小二乘支持向量机模型(LS-SVM),采用连续投影算法及主成分分分析法对最小二乘支持向量机模型进行了优化,并对比分析了两种检测模型的优劣。其中当光源距探头距离为15 mm光源角度为45°时,结合偏最小二乘法建立苹果的可溶性固形物定量检测模型精度最高。模型的预测集相关系数为0.924,预测均方根误差为0.334%。实验结果表明,采用四周照射、底部接收并结合避光圈的这种结构布置能够有效的克服杂散光现象并且提高了光谱中的有效信息。研究可为快速、便携的苹果可溶性固形物检测仪器的设计提供参考依据和理论支撑。 相似文献
12.
近红外光谱法对甲醇柴油中甲醇含量测定 总被引:1,自引:0,他引:1
应用近红外光谱结合化学计量学方法实现了对甲醇柴油中的甲醇含量的定量分析。以实验室配制的32种不同浓度[浓度范围为2%~25.8%(φ)]的甲醇柴油溶液为研究对象,在4 500~7 000 cm-1光谱范围内,建立偏最小二乘(PLS)、支持向量机(SVM)和最小二乘支持向量机(LS-SVM)三种定量分析模型。在建立SVM模型时,经过比较分析,径向基函数(radial basis function,RBF)作为SVM模型的核函数时可以获得更高的预测精度。最终获得甲醇含量的PLS, SVM和LS-SVM三种模型的预测相关系数RP分别为0.985 9, 0.990 3, 0.998 9,预测均方根误差RMSEP分别为0.405 2, 0.356 3, 0.062 4,可以看出,三种预测模型都可以达到很好的效果,最优的预测模型是使用LS-SVM建模。研究结果表明,利用近红外光谱法结合化学计量学方法对甲醇柴油中甲醇含量的检测具有可行性,并可以达到很好的效果。采用近红外光谱技术结合化学计量方法对甲醇柴油中甲醇含量进行定量分析,也为近红外光谱技术快速无损检测甲醇柴油甲醇含量提供参考和应用价值。 相似文献
13.
不同贮藏期水蜜桃硬度及糖度的检测研究 总被引:1,自引:0,他引:1
糖度和硬度作为水蜜桃的两个重要指标,决定其内部品质。在运输或售卖期间,水蜜桃果内水分流失,表面开始松软进而腐烂,内部品质发生变化。研究旨在探讨可见/近红外光谱预测水蜜桃不同贮藏期糖度和硬度的可行性,进一步预测水蜜桃的最佳贮藏期。采用漫透射和漫反射方式采集4个贮藏阶段的水蜜桃光谱,并测量糖度和硬度。分析了4个阶段水蜜桃的平均光谱,光谱强度随着贮藏天数增加而不断提高,且在650~680 nm区域内受果皮颜色及色素的变化产生波峰偏移。同时,分析了糖度和硬度的变化,糖度在贮藏期间逐渐提高,硬度在贮藏期间快速下降,最终糖度增加了3.31%,硬度下降了58.8%。采用多元散射校正、S-G卷积平滑、归一化处理及基线校正等预处理方法来减少噪声和误差对光谱的影响,并使用无信息变量消除(UVE)和连续投影算法(SPA)筛选特征波长,最后利用偏最小二乘回归(PLS)分别建立糖度和硬度的预测模型。分析糖度、硬度的PLS回归系数与平均光谱的波形发现,糖度的高回归系数分布在光谱多处,而硬度的该系数均在波峰波谷附近。SPA和UVE筛选的特征波长建立的糖度模型效果不佳,而硬度模型效果良好。结果表明,漫透射和漫反射检测方式下,糖度的最佳预测相关系数(Rp)及预测均方根误差(RMSEP)分别为0. 886,0.727和0.820,1.003,预处理方法分别是多元散射校正、平滑窗口宽度为3的S-G卷积平滑。此外,漫透射建立的硬度SPA-PLS模型,选用15个光谱变量,得到的Rp和RMSEP为0.798和0.976;而漫反射建立的UVE-PLS模型,选用113个光谱变量,得到的Rp和RMSEP为0.841和0.829。可以看出,漫透射方式预测水蜜桃贮藏期间的糖度更佳,而漫反射预测硬度更佳。利用可见/近红外光谱所建立的糖度和硬度预测模型,能够可靠地预测水蜜桃贮藏期内糖度和硬度的变化,对指导采摘、售卖时间和减少腐烂具有一定的参考价值。 相似文献
14.
茶叶定性和定量近红外光谱分析方法研究 总被引:5,自引:0,他引:5
分别采集了茉莉花茶、苦丁茶、龙井和铁观音4个种类茶叶共120个样本,利用NIRSystems6500型近红外光谱分析仪对样本进行光谱测量,应用近红外光谱分析技术对茶叶进行定性和定量分析。采用主成分分析法,结合聚类分析法,对4种类别的茶叶进行定性鉴别,通过对不同光谱数据预处理方式和不确定因子系数进行比较,确立了最优定性判别定标模型。同时,采用修正的偏最小二乘法,比较不同光谱预处理方法对定标模型的影响,建立了茶叶中水分、茶多酚和咖啡碱含量的定量分析模型,并对未知样本进行预测。定性分析模型的种类识别准确率达到100%,定量分析模型的决定系数均大于0.91,相对分析误差RPD均大于3。结果表明,利用NIRS分析技术可以快速定性和定量分析鉴别茶叶的类别和成分含量。 相似文献
15.
皮革种类的鉴定对生产控制、贸易过程和市场管理都具有重要意义,目前尚未有皮革种类鉴定的正式检测标准,皮革种类鉴定主要依靠感官法、燃烧法、化学溶解法、显微镜法等综合判定,对人员要求高,主观性强。利用近红外光谱技术对市场五种常见皮革样品(头层牛皮革、剖层移膜革、羊皮革、再生革和人造革)进行分析,利用判别分析法(discriminant analysis, DA)结合标准正态变量变换(multiplicative signal correction,MSC)、多元散射校正(standard normal variate,SNV)、一阶微分(first derivative)、二阶微分(second derivative)等光谱预处理方法进行分类鉴别。结果显示:上述五种革类在同一空间中重叠严重,但是利用样本反面光谱数据可以轻易将人造革和其他革类进行区分,误判率为1.2%,余下四种天然或加工革类重叠稍显严重,在同一个空间内同时对四种革类区分效果不是很理想,两两分组的分类效果较好,误判率13%~17.9%。而不同的数据处理方法在不同的判别分析模型中带来的效果也不尽相同,未发现一种能持续稳定为模型提供优化效果的预处理手段。上述数据说明采用近红外手段对于皮革种类进行判别是具有可行性的,由于本次取样来自于市场上的皮包、皮衣、皮带等最终产品,已经过染色、压花、覆膜等各种复杂处理,可能对模型带来一定的影响,如果能采取一些手段,如扩大样本量等,减弱这些影响,应该能得到更满意的结果。 相似文献
16.
近红外光谱温度修正定量分析模型的研究 总被引:9,自引:3,他引:6
以小麦粉末样品为实验材料,研究了环境温度对近红外光谱定量分析结果的影响。将环境温度作为外部变量,使用不同温度下的45个样品建立了测定小麦蛋白质含量的温度修正模型,预测不同温度下的小麦样品的蛋白质含量,结果同以22 ℃恒温下45个样品建立的模型进行了比较。分析结果表明:温度修正模型的预测标准差(SEP)平均为0.333,而恒温模型(22 ℃)的预测标准差随着环境温度与建模时温度差的增大而增大,当环境温度4 ℃时,SEP=0.601 6。温度修正模型可以有效的提高近红外光谱定量分析精度。 相似文献
17.
便携式近红外光谱仪的苹果糖度模型温度修正 总被引:4,自引:0,他引:4
样品温度对近红外光谱有很大影响,在近红外技术评价水果品质的实际应用时,需要修正温度变化对模型预测结果的影响。便携式近红外光谱仪采集不同温度下(0~30℃)苹果的漫透射光谱,采用二阶导数和卷积平滑进行预处理。选取20℃下代表性样本的光谱数据,建立基准PLS模型。斜率/偏差法分别计算苹果糖度PLS模型在0,10和30℃下的修正方程。分析结果表明:斜率/偏差法对0,10和30℃下外部样本预测结果进行修正,预测精度得到显著提高,其修正前后的Q值分别为0.525cv 0.810,0.680cv0.822,0.669cv 0.802。温度修正模型可以有效提高预测精度,也扩展了近红外仪器的适用性,为自主研发便携式近红外光谱仪提供参考。 相似文献
18.
小麦PLS近红外定量分析中温度修正的研究 总被引:1,自引:1,他引:0
以45个小麦籽粒为实验样品,研究样品温度对小麦PLS近红外定量分析的影响, 并提出引入温度修正量对样品光谱进行修正的方法。采用PLS算法将光谱受温度影响部分剔除后,得到不受温度影响的光谱,再进行模型建立与样品分析。实验结果表明:引入温度修正可以有效的消除温度对模型预测结果的影响,从而提高模型的稳定性及应用范围。 相似文献