首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对硅胶电色谱柱的性能进行了考察,发现在水/有机溶剂流动相条件下,几乎不存在气泡问题,流动相的组成在有机溶剂浓度、电解质浓度、PH值等方面可以在较大范围变化,选用5种典型样品,对硅胶电色谱的分离机理进行了系统研究,发现有反相分离机理、正相吸附机理、离子交换机理以及电泳机理参与作用。同时考察了有机溶剂浓度、电解质浓度、PH等对分离的影响。此外,还首次提出了一种全新的电色谱模式-动态改性硅胶电色谱。  相似文献   

2.
Liu Z  Otsuka K  Terabe S  Motokawa M  Tanaka N 《Electrophoresis》2002,23(17):2973-2981
The physical adsorption method proposed previously has been successfully applied to a monolithic silica column. By virtue of the physical adsorption, a chiral stationary phase of avidin was prepared onto the silica monolith. The phase ratio of resulting stationary phase was evaluated with frontal analysis. The method proved to be comparable in phase ratio to the chemical bonding methods used in high-performance liquid chromatography (HPLC). Enantiomer separations were carried out in capillary electrochromatography (CEC) and capillary liquid chromatography (CLC) modes. Due to its larger phase ratio, the resulting column showed more powerful separation capability as compared to open-tubular CEC (OTCEC). Twelve chiral compounds were baseline-resolved. The resulting column showed high separation efficiency, with average theoretical plate numbers of 66 000/m for CLC and 122 000/m for CEC. Good reproducibility was observed, with RSD value less than 1.3% for retention time, retention factor and separation factor, and less than 6.6% for plate counts and resolution (n = 40). Fast separations were achieved with a short column. The test enantiomers were baseline-resolved within 4 min under CLC and CEC modes. In addition, field-enhanced sample injection (FESI) was coupled to CLC as well as CEC to improve the detection sensitivity.  相似文献   

3.
采用溶胶-凝胶技术在毛细管中原位合成硅胶整体柱,通过表面化学修饰技术制备了极性的丙基脲硅胶整体柱.对所制备的整体柱柱性能进行了评价,考察了极性物质在该整体柱上的保留行为,并对其可能的保留机理进行了探讨.研究表明,该柱在亲水作用电色谱模式下能有效分离苯酚类极性小分子化合物.  相似文献   

4.
Liu Y  Heyden YV  Mangelings D 《Electrophoresis》2012,33(11):1613-1623
Chiral monolithic silica capillary columns were prepared by immobilization of amylose-3,5-dimethylphenylcarbamate (ADMPC) bearing a small fraction of 3-(triethoxysilyl)propyl residues through intermolecular polycondensation of the triethoxysilyl groups. The obtained columns were used for chiral separations in capillary electrochromatography (CEC). The effects of the silica monolith nature and the used chiral selector concentration on the resulting enantiomeric separations were investigated. Fifteen chiral compounds, including acidic, neutral, and basic substances were evaluated and twelve showed partial or baseline separation at some of the different conditions tested. These results demonstrated the promising applicability of ADMPC-immobilized monolithic silica columns in CEC enantioseparations, but also revealed the need for further improvements on the level of baseline separations and efficiencies.  相似文献   

5.
A new capillary electrochromatography (CEC) column for the simultaneous analysis of cationic, neutral, and anionic compounds using CEC-ESI-MS is described. Three different silica monolith columns were prepared by changing the poly(ethylene glycol) (PEG) contents for comparison of the separation property of these columns. Different separation programs were used for the simultaneous separation of different charged compounds under the same conditions. The column prepared with 80 mg of PEG separated typical compounds within 15 min using 1 M formic acid as the electrolyte. The analytes migrated in the order of cationic, neutral, and anionic compounds, which means that the migration order was mainly determined by the electrophoresis. The hydrodynamic flow by pressure from the inlet side was significant for a stable analysis to be achieved. The effect of the composition of the sheath liquid was also examined. All analytes (14 amino acids, thiourea, urea, citric acid, and ATP) were detectable when 1% acetic acid in 50% (v/v) methanol was used as the sheath liquid.  相似文献   

6.
胃蛋白酶亲和有机聚合物毛细管整体柱的制备及性能考察   总被引:1,自引:0,他引:1  
池翠杰  王伟  季一兵 《色谱》2014,32(8):791-797
以热引发原位聚合方法制备了聚(甲基丙烯酸缩水甘油酯(glycidyl methacrylate,GMA)-乙二醇二甲基丙烯酸酯(ethyleneglycol dimethacrylate,EDMA))毛细管整体柱,对整体柱的性能进行了表征。结果表明,柱内部结构均匀、渗透性好;整体柱能够实现苯等中性小分子化合物的分离,具有反相色谱特征,重现性和稳定性良好。利用整体柱环氧基团的活性,采用间接法,以戊二醛为连接臂制备胃蛋白酶亲和手性整体柱。在毛细管电色谱模式下进行了柱分离性能研究,并对缓冲液pH值和运行电压等分离条件进行了考察。结果表明,亲和整体柱对4种碱性手性药物(奈福泮、氨氯地平、西酞普兰、扑尔敏)有拆分效果,奈福泮、氨氯地平、西酞普兰能达到基线分离。本文为蛋白质亲和毛细管电色谱整体柱的制备和应用提供了新的思路和方法。  相似文献   

7.
本文采用原位聚合法制备了以四肽YPLG为模板的毛细管分子印迹整体柱,在毛细管电色谱模式下以模板分子和它的结构类似物YPGL为样品,对分子印迹聚合物的识别机理进行了研究。这两种四肽由于化学结构相似且等电点非常相近,普通的电色谱和毛细管电泳方法分离非常困难。但我们的实验表明,印迹整体柱对模板分子具有特异性识别能力,因此YPLG与YPGL之间的分离因子为1.73,分离度达3.72。实验中系统地研究了流动相中有机溶剂的含量、缓冲溶液的pH值、缓冲溶液的盐浓度以及柱温对四肽识别的影响。实验中我们观察到模板在印迹柱上具有非线性的Van’t Hoff行为,揭示可能存在多重保留机理。本研究结果表明,在毛细管电色谱模式下,分子印迹整体柱的分子识别主要决定于样品与印迹聚合物之间的氢键作用以及印迹孔穴的三维结构。  相似文献   

8.
Two novel polysiloxanes containing the metal complex, Co(TACN)(3+)2 (TACN= 1,4,7-triazacyclononane) were used as coatings for capillary electrophoresis (CE) and capillary electrochromatography (CEC). Through crosslinking and covalent bonding, the positively charged polymers were bonded to silica supports. In both CE and CEC, these coatings exhibited strong, pH-independent, and anodic electroosmotic flow (EOF), and had excellent long-term stability. Successful separations of aromatic acids were achieved in CE. In CEC, separation of alkylbenzenes (7 min) and basic compounds (20 min) was achieved with higher resolving power than conventional octadecyl silica packings. These polymers represent a new class of coatings for CE and CEC that generate pH-independent EOF.  相似文献   

9.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

10.
《Analytical letters》2012,45(16):2377-2388
Capillary electrochromatography (CEC) is important for applications in enantiomer separation. The problems associated with column fabrication bring a challenge in developing monoliths with ease of preparation, robustness of separation, enhanced mass transfer, and lower pressure drop. In this research, the covalent binding of proteins on to a monolithic matrix was investigated to overcome the drawback of loss and/or denaturing of the biomolecules from physical adsorption and encapsulation method. A chitosan/silica hybrid monolith was prepared and a protein, bovine serum albumin, was covalently immobilized on the column. The prepared monolith was evaluated using the enantioseparation of D,L-tryptophan by CEC. It was found that separation of tryptophan enantiomers with a resolution of 2.44 was achieved by using 20 mmol L?1 phosphate buffer at pH 7.5. A higher chitosan concentration was also proven to be of possible use in the synthesis with the aid of acetic acid as the solvent. The much shorter retention time and increased separation ability demonstrate the advantages of capillary column under investigation.  相似文献   

11.
The retention behaviour and selectivity of selected basic, neutral and acidic peptides have been studied by capillary electroendoosmotic chromatography (CEC) with Hypersil C8, C18, Hypersil mixed-mode, and Spherisorb C18/SCX columns, 250 (335) mm x 100 microns, packed with 3 microns particles, and eluted with mobile phases composed of acetonitrile-triethylamine-phosphoric acid (TEAP) at pH 3.0 using a Hewlett-Packard Model HP3DCE capillary electrophoresis system. The selected peptides were desmopressin (D), two analogues (A and B) of desmopressin, oxytocin (O) and carbetocin (C). The peptides eluted either before or after the electroendoosmotic flow (EOF) marker, depending on the concentration of acetonitrile used and the buffer ionic strength. The retention and selectivity of these peptides under CEC conditions were compared to their behaviour in free zone capillary electrophoresis (CZE), where the separation mode was based on the electrophoretic migration of the analytes due to their charge and Stokes radius properties. In addition, their retention behaviour in RP-HPLC was also examined. As a result, it can be concluded that the elution process of this group of synthetic peptides in CEC with a TEAP buffer at pH 3.0 is mediated by a combination of both electrophoretic migration processes and retention mechanisms involving hydrophobic as well as silanophilic interactions. This CEC method when operated with these 3 microns reversed-phase and mixed-mode sorbents with peptides is thus a hybrid of two well-known analytical methods, namely CZE and RP-HPLC. However, the retention behaviour and selectivity of the selected peptides differs significantly in the CEC mode compared to the RP-HPLC or CZE modes. Therefore this CEC method with these peptides represents an orthogonal analytical separation procedure that is complimentary to both of these alternative techniques.  相似文献   

12.
A silica-based monolithic stationary phase prepared by the sol-gel process in a 100 microm I.D. fused-silica (FS) capillary has been modified chemically with 3-mercaptopropyl trimethoxysilane followed by immobilization of a strong cation-exchange (SCX) type chiral selector, (S)-N-(4-allyloxy-3,5-dichlorobenzoyl)-2-amino-3,3-dimethylbutane phosphonic acid, by radical addition reaction onto the reactive sulfhydryl surface. After a fine-tuning of the mobile phase composition, the enantioselective capillary column was evaluated for the separation of various chiral basic drugs by enantioselective non-aqueous capillary electrochromatography (CEC), in comparison to capillary column analogs packed with 3.5 microm silica particles having attached the same selector. The performance of the monolithic silica column was further compared to corresponding polymethacrylate-based organic polymer monoliths. The study indicated that strong counter-ions such as 2-aminobutanol or N,N,N',N'-tetramethylethylenediamine are needed, although they reduce the electroosmotic flow velocity and separation factors in comparison to less efficient counter-ions, in order to allow the elution of the oppositely charged solutes in the ion-exchange retention mode within reasonable run time and as sharp zones. In contrast, weak counter-ions such as N,N-diisopropylethylamine (Huenig base) provided stronger electroosmotic flow and much better separation factors, but relatively poor peak efficiencies. Overall, with the chemically functionalized monolithic silica column the high quality separations of packed column analogs could be approximated, with regards to both separation factors and peak performances. On the other hand, the monolithic capillary column certainly outperformed the packed column in terms of system robustness under capillary electrochromatography conditions and showed excellent column longevity. The enantioselective strong cation-exchange-type monolithic silica column performed also well in comparison to the organic polymer monolith.  相似文献   

13.
A novel monolithic silica column with zwitterionic stationary phase was prepared by in-situ covalent attachment of phenylalanine to a 3-glycidoxypropyltriethoxysilane-modified silica monolith. Due to the zwitterionic nature of the resulting stationary phase, the density and sign of the net surface charge, and accordingly the direction and magnitude of electroosmotic flow in this column during capillary electrochromatography could be manipulated by adjusting the pH values of the mobile phase. CEC separations of various acidic and basic compounds were performed on the prepared column in anodic and weakly cathodic EOF modes, respectively. The peak tailing of basic compounds in CEC on a silica column could be alleviated at optimized buffer compositions. Besides the electrophoretic mechanism and weak hydrophobic interaction, weak cation- and anion-exchange interactions are also involved in the separations of acids and bases, respectively, on the zwitterionic column.  相似文献   

14.
A neutral, nonpolar monolithic capillary column was evaluated as a hydrophobic stationary phase in pressurized CEC system for neutral, acidic and basic solutes. The monolith was prepared by in situ copolymerization of octadecyl methacrylate and ethylene dimethacrylate in a binary porogenic solvent consisting of cyclohexanol/1,4‐butanediol. EOF in this hydrophobic monolithic column was poor; even the pH value of the mobile phase was high. Because of the absence of fixed charges, the monolithic capillary column was free of electrostatic interactions with charged solutes. Separations of neutral solutes were based on the hydrophobic mechanism with the pressure as the driving force. The acidic and basic solutes were separated under pressurized CEC mode with the pressure and electrophoretic mobility as the driving force. The separation selectivity of charged solutes were based on their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase, and no obvious peak tailing for basic analytes was observed. Effects of the mobile phase compositions on the retention of acidic compounds were also investigated. Under optimized conditions, high plate counts reaching 82 000 plates/m for neutral compounds, 134 000 plates/m for acid compounds and 150 000 plates/m for basic compounds were readily obtained.  相似文献   

15.
Li Y  Xiang R  Horváth C  Wilkins JA 《Electrophoresis》2004,25(4-5):545-553
A new kind of monolithic capillary column was prepared for capillary electrochromatography (CEC) with a positively charged polymer layer on the inner wall of a fused-silica capillary and a neutral monolithic packing as the bulk stationary phase. The fused-silica capillary was first silanized with 3-glycidoxypropyltrimethoxysilane (GPTMS). Polyethyleneimine (PEI) was then covalently bonded to the GPTMS coating to form an annular positively charged polymer layer for the generation of electroosmotic flow (EOF). A neutral bulk monolithic stationary phase was then prepared by in situ copolymerization of vinylbenzyl chloride (VBC) and ethylene glycol dimethacrylate in the presence of 1-propanol and formamide as porogens. Benzyl chloride functionalities on the monolith were subsequently hydrolyzed to benzyl alcohol groups. Effects of pH on the EOF mobility of the column were measured to monitor the completion of reactions. Using a column with this design, we expected general problems in CEC such as irreversible adsorption and electrostatic interaction between stationary phase and analytes to be reduced. A peptide mixture was successfully separated in counter-directional mode CEC. Comparison of peptide separations in isocratic monolithic CEC, gradient HPLC and capillary zone electrophoresis (CZE) indicated that the separation in CEC is governed by a dual mechanism that involves a complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

16.
A novel monolithic silica column that has a polar‐embedded amide‐secondary amine group linking with C16 functionality for RP‐CEC is described. The amide‐secondary aminealkyloxysilane was synthesized by the reaction of 3‐(2‐aminoethylamino) propyltrimethoxysilane with hexadecanoyl chloride. Then, the silylant agent was bonded to the silica monolith matrix to produce hexadecanamide‐secondary amine bonded silica (HDAIS) monolithic column. The electrochromatographic performance of HDAIS monolithic column for the separation of neutral, basic and polar solutes was studied, which was compared to that using the hexadecyl bonded silica monolithic column. The HDAIS monolithic column displayed reduced hydrophobic retention characteristics in the separation of five hydrophobic n‐alkylbenzenes and four polar phenols when compared to the hexadecyl bonded silica monolithic column. A very much reduced silanol activity of HDAIS monolithic column was observed in the separation of test basic mixture including four aromatic amines, atenolol and metoprolol with 10 mM borate buffer (pH 7.5) containing 30% v/v ACN as the mobile phase. The comparison results indicate good performance for both polar and basic mixtures on HDAIS monolithic column in RP‐CEC, and also show promising results for further applications.  相似文献   

17.
Kang J  Wistuba D  Schurig V 《Electrophoresis》2002,23(7-8):1116-1120
A method for the preparation of a silica monolithic capillary electrochromatography (CEC) column for the separation of enantiomers has been developed. The porous silica monolith was fabricated inside a fused-silica capillary column by using the sol-gel process. After gelation for 24 h, hydrothermal treatment at 100 degrees C for 24 h was performed to prevent the sol-gel matrix from cracking. The prepared monolith was then coated with Chirasil-beta-Dex which represents a chiral polymer prepared by grafting permethyl-beta-cyclodextrin to polymethylsiloxane with an octamethylene spacer. Immobilization of Chirasil-beta-Dex was performed by heat treatment at 120 degrees C for 48 h to give a nonextractable coating. The column performance was evaluated by using racemic hexobarbital as a model compound. The efficiency of 9.2 x 10(4) theoretical plates/m for the first eluted enantiomer of hexobarbital was obtained at an optimal flow rate of the mobile phase. The effect of mobile phase composition on enantiomeric separation of hexobarbital was also investigated. The column proved to be stable for more than one hundreds of runs during a two-months period. The enantiomers of several neutral and negatively charged chiral compounds were baseline separated on this column.  相似文献   

18.
毛细管电色谱柱及其固定相制备技术的进展   总被引:3,自引:0,他引:3  
谷雪  瞿其曙  阎超 《色谱》2007,25(2):157-162
毛细管电色谱结合了毛细管电泳的高分离效率和高效液相色谱的高选择性,因而在这几年受到了越来越多的关注。本文介绍了近期毛细管电色谱柱及其固定相制备方法和应用的进展。  相似文献   

19.
Polymeric methacrylate-based monoliths are evaluated in capillary electrochromatography (CEC) and pressurized capillary electrochromatography (p-CEC) for their potential in pharmaceutical analysis. Using a given polymerization mixture as a basis for the monolith synthesis, different mobile phase pH at constant organic modifier concentrations are tested in both CEC and p-CEC. The test set consists of basic, acidic, amphoteric, and neutral compounds, which are mainly pharmaceuticals. Because of the mainly hydrophobic character of the stationary phase, the interactions are largest when the compounds appear in an uncharged state, but some ion-exchange phenomena with negatively charged compounds can also be observed. In CEC, acidic substances are most retained at low pH. For amphoteric and neutral compounds, no preference regarding analyzing pH can be derived from these experiments. For basics, a high pH is chosen, but a reduced solvent strength is needed to enhance the retention of these compounds. The retention mechanism in p-CEC can also be assigned to both hydrophobic and ionic interactions. For acidic, amphoteric, and neutral compounds, acceptable retention is seen. For the basic compounds, the retention with a mobile phase containing 50% organic modifier is low, as in CEC. However, when the organic modifier content in the mobile phase is decreased, retention increases and the selectivity of the stationary phase is more pronounced. This mode of operation presents a possibility for separating some test mixtures, thus some potential for pharmaceutical analysis is seen. More efforts are needed to obtain higher efficiencies and better peak shapes, which might be solved by a further optimization of both the stationary phase synthesis and the mobile phase composition.  相似文献   

20.
This work investigated the repeatability of column preparation for a reversed-phase C18 monolith, namely stearyl methacrylate-co-ethylene glycol dimethacrylate (SMA-EDMA). The columns were thermally polymerised using three commonly available heating devices (GC oven, hot air oven and water bath) and their chromatographic performance evaluated using micro-liquid chromatography for separation of five test compounds. Precision in terms of %RSD of retention times were 9.0, 6.5, and 12.5 using GC oven, hot air oven and water bath, respectively. Between-batch precision for the hot air oven (n = 3 days) was less than 10.4% for retention time. The SMA-EDMA monolith was applied to the separation of tocopherol homologues by capillary electrochromatography. Usually tocopherol homologues cannot be completely separated by conventional reversed-phase C8- or C18-packed bed or C18-silica based monolithic columns. Polymer monolith has been shown to give remarkable selectivity towards the tocopherols compared to the conventional microparticulate phase and silica based monolith. Successful separation of the tocopherol isomers was achieved on the SMA-EDMA monolith without any column modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号