首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 964 毫秒
1.
2.
Dendrimer-like copolymers with two and three generations, (polystyrene)3-b-(poly(l-lactide))6 (PSt3-b-PLLA6) and PSt3-b-PLLA6-b-PSt12 have been successfully prepared using core-first method. The first step of this synthesis is the preparation of three-armed PSt by atom transfer radical polymerization (ATRP) of St using 1,1,1-tri(methylene-α-bromoisobutyryl)propane as initiator. Terminal divergence of the polymers obtained was achieved by the reaction of terminal bromines with branching agent, 2,2-dimethyl-1,3-dioxolane-4-methanol. After deprotection, the polymer with six terminal hydroxyl groups was used in the ring-opening polymerization of LLA. The dendrimer-like copolymer with PLLA as a second generation diverged continuously by the reaction of 6 terminal hydroxyl groups with branching agent, 2,2-bis(methylene-α-bromoisobutyryl)propionyl chloride. The resultant polymer with 12 terminal bromines was used as macroinitiator in the ATRP of St to produce the target dendrimer-like copolymer, PSt3-b-PLLA6-b-PSt12. The structures of polymers obtained from each step were confirmed by their 1H NMR spectra and GPC measurements. DSC results show one for the three-armed PSt, , and for the dendrimer-like copolymer with two generations, C(PSt(PLLA)2)3, and , and for the copolymer with three generations, C(PSt(PLLA(PSt)2)2)3.  相似文献   

3.
The rare-earth dicyanamides Ln[N(CN)2]3 (Ln=La, Ce, Pr, Nd, Sm, Eu) were obtained via ion exchange in aqueous medium and subsequent drying: The crystal structures were solved and refined based on X-ray powder diffraction data and they were found to be isotypic: Ln[N(CN)2]3; Cmcm (no. 63), Z=4, Ln=La: , , ; Ce: , , ; Pr: , , ; Nd: , , ; Sm: , , ; Eu: , , ). The compounds represent the first dicyanamides with trivalent cations. The Ln3+ ions are coordinated by three bridging N atoms and six terminal N atoms of the dicyanamide ions forming a three capped trigonal prism. The structure type is related to that of PuBr3. The novel compounds Ln[N(CN)2]3 have been characterized by IR and Raman spectroscopy (Ln=La) and the thermal behavior has been monitored by differential scanning calorimetry (Ln=Ce, Nd, Eu).  相似文献   

4.
5.
A new uranium (IV) phosphate of proposed formula U2(PO4)2HPO4·H2O, i.e. uranium phosphate-hydrogenphosphate hydrate (UPHPH), was synthesized in autoclave and/or in polytetrafluoroethylene closed containers at 150 °C by three ways: from uranium (IV) hydrochloric solution and phosphoric acid, from uranium dioxide and phosphoric acid and by transformation of the uranium hydrogenphosphate hydrate U(HPO4)2·nH2O. The new product appears similar to the previously published thorium phosphate-hydrogenphosphate hydrate Th2(PO4)2HPO4·H2O (TPHPH). From preliminary studies, it was found that UPHPH crystallizes in monoclinic system (, , , β=91.67(3)° and ). Heated under inert atmosphere, this compound is decomposed above 400 °C into uranium phosphate-triphosphate U2(PO4)P3O10, uranium diphosphate α-UP2O7 and diuranium oxide phosphate U2O(PO4)2.Crystallized cerium (IV) phosphate-hydrogenphosphate hydrate Ce2(PO4)2HPO4·H2O (CePHPH) was also synthesized from (NH4)2Ce(NO3)6 and phosphoric acid solutions by the same method (monoclinic system: , , , β=91.98(1)° and ). When heating above 600 °C, cerium (IV) is reduced into Ce (III) and forms a mixture of CePO4 (monazite structure) and CeP3O9.  相似文献   

6.
The hydrothermal synthesis and single crystal structure of Zn3(HPO3)4·Zn(H2O)6 are reported. The structure is built-up from vertex linking ZnO4 tetrahedral and HPO3 pseudo-pyramids units, giving rise to a three-dimensional framework with large 8, 16-membered ring channels. The zincophosphite is purly inorganic with the octahedral zinc complex filled in the channel. The synthesis of system required the presence of the organic amine which is not incorporated into the structure of the product. The framework-metal complex encapsulating in the channel is the first time appeared in open-framework zincophospates and zincophosphites. Crystal data: Zn3(HPO3)4·Zn(H2O)6, M=689.52, orthorhombic, Fddd (No. 70), , , , , Z=8, , , R=0.0265, Rw=0.0406.  相似文献   

7.
The disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3-MIIO-Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O′A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (, , ) to 96 h (, , ) while the O′ oxygen was shifted from position 8b (, , ) to Wyckoff position 32e (, , ). The refined displacement magnitudes off the 16d and 8b sites for the A and O′ sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively.  相似文献   

8.
9.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

10.
Poly(methyl methacrylate-co-glycidyl methacrylate-tris(hydroxymethyl)aminomethane) (PMGT) copolymers were obtained by copolymerization of methyl methacrylate (MMA) and a chelating monomer, glycidyl methacrylate-tris(hydroxymethyl)aminomethane (GMA-Tris), with potassium persulfate as an initiator. The glass transition temperature (Tg) and the proton spin-lattice relaxation time in the rotating frame () substantiated the formation of random copolymers. Borate-loaded PMGT (BPMGT) complexes were prepared by mixing PMGT and boric acid solution. The formation of coordination bond between PMGT and borate was studied using differential scanning calorimetry, infrared and 13C solid-state nuclear magnetic resonance spectroscopy. A single composition dependent Tg was obtained for the PMGT copolymers. The Tg value of BPMGT complex was much higher than that of PMGT copolymer with the same composition. The of the main chains in the PMGT copolymers and BPMGT complexes had one value, and that in the complexes was higher than that in the copolymers. The apparent activation energy (Ea) of the thermo-oxidative degradation of Tris units in complexes was larger than that in copolymers, whereas the Ea value of the MMA-GMA matrix was reversed.  相似文献   

11.
Under mild hydrothermal conditions UO2(NO3)2·6H2O, Hg2(NO3)2·2H2O, and Na2HAsO4·7H2O react to form [Hg5O2(OH)4][(UO2)2(AsO4)2] (HgUAs-1). Single crystal X-ray diffraction experiments reveal that HgUAs-1 possesses a pseudo-layered structure consisting of two types of layers: and . The layers are complex, and contain three crystallographically unique Hg centers. The coordination environments and bond-valence sum calculations indicate that the Hg centers are divalent. The layers belong to the Johannite topological family. The and layers are linked to each other through μ2-O bridges that include Hg?O=U=O interactions.  相似文献   

12.
α-Ca3(BN2)2 crystallizes in the cubic system (space group: ) with one type of calcium ions disordered over of equivalent (8c) positions. An ordered low-temperature phase (β-Ca3(BN2)2) was prepared and found to crystallize in the orthorhombic system (space group: Cmca) with lattice parameters: , , and . Structure refinements on the basis of X-ray powder data have revealed that orthorhombic β-Ca3(BN2)2 corresponds to an ordered super-structure of cubic α-Ca3(BN2)2. The space group Cmca assigned for β-Ca3(BN2)2 is derived from by a group-subgroup relationship.DSC measurements and temperature-dependent in situ X-ray powder diffraction studies showed reversible phase transitions between β- and α-Ca3(BN2)2 with transition temperatures between 215 and 240 °C.The structure Sr3(BN2)2 was reported isotypic with α-Ca3(BN2)2 () with one type of strontium ions being disordered over of equivalent (2c) positions. In addition, a primitive () structure has been reported for Sr3(BN2)2. Phase stability studies on Sr3(BN2)2 revealed a phase transition between a primitive and a body-centred lattice around 820 °C. The experiments showed that both previously published structures are correct and can be assigned as α-Sr3(BN2)2 (, high-temperature phase), and β-Sr3(BN2)2 (, low-temperature phase).A comparison of Ca3(BN2)2 and Sr3(BN2)2 phases reveals that the different types of cation disordering present in both of the cubic α-phases () have a directing influence on the formation of two distinct (orthorhombic and cubic) low-temperature phases.  相似文献   

13.
Homopolymerization of methyl acrylate (MA) and methyl methacrylate (MMA) by atom transfer radical polymerization (ATRP) were carried out at 90 °C using methyl-2-bromopropionate (MBP) as initiator, copper halide (CuX, X=Cl, Br) as catalyst, 2,2-bipyridine (bpy) or N,N,N,N,N-pentamethyldiethylenetriamine (PMDETA) as ligand in 1-butanol (less polar and containing OH) and acetonitrile (more polar) solvents. It was found that with CuCl/bpy catalyst ATRP of MA and MMA in 1-butanol proceeded faster than that in acetonitrile. The rate of ATRP of MA and MMA in acetonitrile and 1-butanol was comparable when CuCl/PMDETA used as catalyst system. The number-average molecular weights increased with conversion and polydispersities were low . The ATRP of MA and MMA with vinyl acetate telomer having trichloromethyl end group (PVAc-CCl3) were also used to synthesize new block copolymers. The structures and molecular weight of synthesized PVAc-b-PMA and PVAc-b-PMMA were characterized by 1H NMR, FTIR spectroscopy and gel permeation chromatography (GPC) and shown that the block copolymers were novel.  相似文献   

14.
A ferroelectric crystal (C3N2H5)5Sb2Br11 has been synthesized. The single crystal X-ray diffraction studies (at 300, 155, 138 and 121 K) show that it is built up of discrete corner-sharing bioctahedra and highly disordered imidazolium cations. The room temperature crystal structure has been determined as monoclinic, space group, P21/n with: , and and β=96.19°. The crystal undergoes three solid-solid phase transitions: ) discontinuous, continuous and discontinuous. The dielectric and pyroelectric measurements allow us to characterize the low temperature phases III and IV as ferroelectric with the Curie point at 145 K and the saturated spontaneous polarization value of the order of along the a-axis (135 K). The ferroelectric phase transition mechanism at 145 K is due to the dynamics of imidazolium cations.  相似文献   

15.
16.
The uranyl vanadates A2(UO2)3(VO4)2O (A=Li, Na) have been synthesized by solid-state reaction and the structure of the Li compound was solved from single-crystal X-ray diffraction. The crystal structure is built from chains of edge-shared U(2)O7 pentagonal bipyramids alternatively parallel to - and -axis and further connected together to form a three-dimensional (3-D) arrangement. The perpendicular chains are hung on both sides of a sheet parallel to (001), formed by U(1)O6 square bipyramids connected by VO4 tetrahedra, and derived from the autunite-type sheet. The resulting 3-D framework creates non-intersecting channels running down the - and -axis formed by empty face-shared oxygen octahedra, the Li+ ions are displaced from the center of the channels and occupy the middle of one edge of the common face. The peculiar position of the Li+ ion together with the full occupancy explain the low conductivity of Li2(UO2)3(VO4)2O compared with that of Na(UO2)4(VO4)3 containing the same type of channels half occupied by Na+ ions in the octahedral sites.Crystallographic data for Li2(UO2)3(VO4)2O: tetragonal, space group I41/amd, , , , Z=4, ρmes=5.32(2) g/cm3, ρcal=5.36(3) g/cm3, full-matrix least-squares refinement basis on F2 yielded, R1=0.032, wR2=0.085 for 37 refined parameters with 364 independent reflections with I?2σ(I).  相似文献   

17.
The effects of the chain structure and the intramolecular interaction energy of an A/B copolymer on the miscibility of the binary blends of the copolymer and homopolymer C have been studied by means of a Monte Carlo simulation. In the system, the interactions between segments A, B and C are more repulsive than those between themselves. In order to study the effect of the chain structure of the A/B copolymer on the miscibility, the alternating, random and block copolymers were introduced in the simulations, respectively. The simulation results show that the miscibility of the binary blends strongly depends on the intramolecular interaction energy () between segments A and B within the A/B copolymers. The higher the repulsive interaction energy, the more miscible the A/B copolymer and homopolymer C are. For the diblock copolymer/homopolymer blends, they tend to form micro phase domains. However, the phase domains become so small that the blend can be considered as a homogeneous phase for the alternating copolymer/homopolymer blends. Furthermore, the investigation of the average end-to-end distance () in different systems indicates that the copolymer chains tend to coil with the decrease of whereas the of the homopolymer chains depends on the chain structure of the copolymers. As for the system containing the alternating or the random copolymers, the homopolymer chains also tend to coil with the decrease of . However, for the systems including the block copolymers, there is a slight difference in the of the homopolymer chains with the variation of .  相似文献   

18.
19.
Two rare-earth compounds containing selenium atoms, La(HSeO3)(SeO4) with a new open framework structure and KNd(SeO4)2 with a layered structure, have been synthesized under “sol-gel” hydrothermal conditions for the first time. Single-crystals of La(HSeO3)(SeO4) crystallize in the monoclinic system (P21, , , , β=104.91(3)°, Z=2, RAll=0.032). The structure contains puckered polyhedral layers made of LaOx (x=9,10) and SeO4 groups, which are connected via SeO3-uints to the 3D structure. The crytal structure of KNd(SeO4)2 (monoclinc, P21/c, , , , β=91.38(3)°, Z=4, RAll=0.051) contains honeycomb-like six-ring NdO9 polyhedra forming layers which are further decorated with SeO4 tetrahedra. The K+ ions occupy the interspaces of these layers and provide the charge balance.  相似文献   

20.
New block copolymers with narrow molecular weight distribution based on (2,3-epithiopropylmethacrylate) (ETMA), methylmethacrylate (MMA) and n-butylmethacrylate (nBMA) have been successfully synthesized via reversible addition-fragmentation transfer (RAFT) polymerization. First, RAFT homopolymerization of ETMA and MMA was carried out using 2-(2-cyanopropyl) dithiobenzoate (CPDB) as the chain transfer agent (CTA) and 2,2-azobisisobutyronitrile (AIBN) as the initiator. PETMA-b-P(nBMA) copolymers were synthesized using PETMA homopolymers as the macro-chain transfer agent (MCTA), while PMMA-b-PETMA diblock copolymers were synthesized using PMMA as the MCTA. The evolution of the molecular weight and molecular weight distribution of the homo- and co-polymers were compatible with the RAFT polymerization features. Thin films from the block copolymers were prepared by spin coating a 1 wt% polymer solution from toluene, chloroform or THF. After the preparation, the films were annealed under 80% vapor pressure of chloroform for 1, 2 and 4 h and investigated with scanning electron microscopy (SEM). The most interesting results were found in the films prepared using PETMA-b-P(nBMA) copolymers (). The observed images suggested the formation of hybrid lamellar structures, ascribed to the combination of its higher molecular weight and solvents viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号