首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles (Ag, Pd) were prepared by heterogeneous nucleation on the interlayer space of layered montmorillonite and kaolinite minerals in aquatic dispersion. Interlamellar incorporation of nanoparticles was monitored by X-ray diffraction and verified by transmission electron microscopy (TEM). After the reduction of adsorbed metal ions, a new Bragg reflection appeared, proving the formation of nanoparticles in the interlamellar space of clay mineral. Lamellar structure of layered silicates is partly destroyed by the particle formation. TEM images showed that larger nanoparticles were formed by UV irradiation and hydrazine hydrate than in the case of reduction by NaBH4. Aqueous solutions of polyvinyl pyrrolidone and clay minerals were used for the stabilization of Pd° nanoparticles. The size of particles generated on the surface of clay minerals by heterogeneous nucleation increased with increasing metal concentration. When polymer is added to this system, particle size can be decreased by increasing polymer concentration. In this case, the particles are stabilized by the concerted action of the support and the macromolecule. The polymers promoted intercalation of nanoparticles into the clay mineral. In the absence of nanoparticles, the intercalation of polymers was significantly less extensive.  相似文献   

2.
3.
To study the change of interlayer structure of a Wyoming-type Na-montmorillonite as a result of the replacement of interlayer Na+ ions by cetylpyridinium (CP+) ions, a series of NPT Monte Carlo simulations of the clay mineral with different contents of CP+, Na+, Cl- ions and water in its interlayer space is carried out. In agreement with conclusions from experimental studies, the simulations show that the CP+ ions form monomolecular, bimolecular, and pseudotrimolecular layers with increasing interlayer contents. Calculated potential energies reveal that clay-organic interactions are stronger than organic-organic interactions in CP+-modified montmorillonite, which is in conformity with observations of earlier thermogravimetric experiments. The simulation results indicate that the pseudotrimolecular arrangement of CP+ ions is a prerequisite for the experimentally observed interlayer sorption of inorganic anions. Furthermore, in the interlayer space with a pseudotrimolecular layer, chloride ions favor the formation of pairs with inorganic rather than organic cations. On the basis of these findings and available experimental data, we propose that the interlayer sorption of inorganic anions from the pore space of an organically modified montmorillonite may occur not only in pairs with organic cations, as suggested earlier, but also in pairs with inorganic cations, which represents a so-far unconsidered and maybe more important mechanism of anion sorption on clay minerals.  相似文献   

4.
Low dimensional metal sulfide particles have been prepared in the interlayers of montmorillonites via reactions of the metal ion-exchanged clay minerals in aqueous dispersions with gaseous hydrogen sulfide. The montmorillonites separated from the Wyoming (USA) and Jel?ovy Potok (Slovakia) bentonites were saturated with Pb(2+) or Zn(2+). In the final nanohybrids, the smectite mineral can be incorporated with metal sulfide pillars and/or nanoparticles. Properties of the prepared materials were investigated by various analytical techniques. The formation of metal sulfide nanoparticles in the interlayer galleries was indicated by X-ray diffraction and energy dispersive X-ray analysis. About 50% of Pb(2+) or Zn(2+) present in montmorillonite has formed metal sulfide semiconducting units. Infrared spectroscopy and thermogravimetric analysis were used for characterization of starting materials and products. Ultraviolet-visible absorption and photoluminescence spectroscopies confirmed that final composite systems acquired the optical properties of the incorporated quantum low dimensional systems exhibiting blue shift of the energy gap and higher oscillator strength excitonic peaks. Larger amounts of metal sulfide nanoparticles were formed in montmorillonite Jel?ovy Potok probably as a consequence of its higher cation exchange capacity.  相似文献   

5.
The effects of the presence of a cationic surfactant on the sorption of two typical nitrogen heterocyclic compounds (NHCs) on swelling and nonswelling phyllosilicates were investigated. The addition of a cationic surfactant to a NHC-phyllosilicate system can either solubilize the sorbed NHC molecules or immobilize the suspended NHC molecules, depending upon the concentration and sequence of the surfactant added. The presence of surfactant molecules on the clay mineral surfaces promoted sorption of more neutral NHC molecules due to hydrophobic effect, and this resulted in a considerable increase in sorption at high pH conditions. Both surfactant and NHC molecules were sorbed not only on the external surfaces of the phyllosilicates but also on the interlayer spaces of swelling-type clay minerals, and the resulting change in basal spacings indicates the competition between the two groups of molecules in the interlayer space. Copyright 2000 Academic Press.  相似文献   

6.
The adsorption of the monovalent anionic dye alizarinate onto Co-, Ni- and Cu-montmorillonite was carried out by adding the dye into aqueous clay suspensions. During the loading of the clay suspension by alizarinate, only some of the added organic anion is adsorbed by the clay forming d-coordination chelate complexes on the clay surface. Maximum adsorption of Co-, Ni- and Cu-clay were 13, 13 and 25 mmol dye per 100 g clay. Since the capacity of the clay for these transition metal cations is 38 mmol per 100 g clay, these saturations indicate that only part of the transition metal cations form positively charged d-coordination chelate complexes with metal:ligand ratio of 1. The complex cations can be located inside the interlayer spaces or on the broken bonds surfaces. Thermo-XRD-analysis and peptization studies of the solids and the clay water systems respectively were used here to identify the sorption sites. The Co and Ni complexes were obtained on the broken bonds surfaces whereas the Cu complexes were obtained in the interlayer space. Co2+, Ni2+ and Cu2+ were extracted from the clay into suspensions containing excess alizarinate.  相似文献   

7.
Properties and structure of manganese oxide-coated clay   总被引:4,自引:0,他引:4  
In the environment, heavy metals are important contaminants that sorb to and accumulate in soils and sediments. Dominant minerals in the subsurface are oxides and clay, which occur as discrete particles and heterogeneous systems; these surfaces can significantly impact the mobility and bioavailability of metals through sorption. To better understand heterogeneous systems, amorphous (hydrous manganese oxide (HMO)) and crystalline manganese oxides (birnessite and pyrolusite) were coated on montmorillonite. However, the montmorillonite substrate potentially inhibited crystallization of the pyrolusite coating, and also resulted in a poorly crystalline birnessite. Mineralogy and morphology of the coated systems suggest an amorphous structure for HMO and uniform coverage for HMO and birnessite coatings; the presence of Si and Al indicates uncoated areas along intraplanar surfaces. The coating surface charge behaved similarly to that of discrete oxides and clay where the pH(znpc) of HMO- and birnessite-coated clay were 2.8 and 3.1, respectively. Surface area of the coated systems increased while the pore size distribution decreased as compared to the external surface area and pores of montmorillonite. X-ray absorption spectroscopy (XAS) revealed the local structural environment of Mn in the HMO- and birnessite-coated clay was consistent with the pure phase oxides: for HMO-coated clay 3.1 atoms of oxygen at 1.89 +/- 0.02 A in the first shell and 2.7 atoms of manganese at 2.85 +/- 0.02 in the second shell; and, for birnessite-coated clay 6 atoms of oxygen at 1.91 +/- 0.02 A in the first shell and 6 atoms of manganese at distance 2.99 +/- 0.02 A in the second shell. Overall, the surface properties suggest that the coating behaves like that of discrete oxides, an important sink for metal contaminants.  相似文献   

8.
聚氧乙烯-粘土-碱金属离子插层复合物作用机理研究   总被引:1,自引:0,他引:1  
测量了聚氧乙烯(PEO)-粘土-K/Na插层复合物在不同相对湿度环境中的相对吸水量, 研究了相对吸水量与粘土层间距d001之间的关系, 并结合X射线光电子能谱的研究结果, 探讨了复合物中PEO、粘土与碱金属离子三者之间的相互作用. 在K-MMT-PEO复合物中, K与PEO和粘土表面都存在配合作用, 形成稳定的三元配合物, 在不同相对湿度下, K-MMT-PEO配合物吸水能力较低, 层间距基本不变. 在Na-MMT-PEO复合物中, Na与PEO形成配合物, 水分子能破坏Na-PEO之间的配合作用, 使PEO和Na各自形成水化层, 因此随着相对湿度的增加Na-MMT-PEO复合物的相对吸水量和层间距都增大.  相似文献   

9.
The use of thermo-XRD-analysis in the study of organo-smectite complexes   总被引:2,自引:0,他引:2  
Summary Thermo-XRD-analysis is applied to identify whether or not the adsorbed organic species penetrates into the interlayer space of the smectites mineral. In this technique an oriented smectite sample is gradually heated to temperatures above the irreversible dehydration of the clay, and after each thermal treatment is diffracted by X-ray at ambient conditions. In the thermal treatment of organo-clays, under air atmosphere at temperatures above 250°C, the organic matter is in part oxidized and charcoal is formed from the organic carbon. In inert atmosphere e.g. under vacuum above 250°C the organic matter is pyrolyzed and besides small molecules, charcoal is formed. If the adsorbed organic compound is located in the interlayer space, the charcoal is formed in that space, preventing the collapse of the clay. A basal spacing of above 1.12 nm suggests that during the adsorption the organic compound penetrated into the interlayer space. Thermo-XRD-analyses of montmorillonite complexes with anilines, fatty acids, alizarinate, protonated Congo red and of complexes of other smectites with acridine orange are described. To obtain information about spacings of the different tactoids that comprise the clay mixture, curve-fitting calculations on the X-ray diffractograms were adapted.  相似文献   

10.
The effects of the structure of organomodified montmorillonite and the conditions of its catalytic activation by titanium and vanadium chlorides on the synthesis of nanocomposite materials based on ultra-high molecular weight polyethylene with an exfoliated structure by an in situ polymerization method were studied. It was shown that, with the use of organomodified montmorillonite with the interplanar spacing d001 = 1.6–1.8 nm, in which the alkyl radicals of a modifier are arranged in parallel to the basal silicate surfaces, the catalyst is adsorbed only on the external surface of particle, and it does not penetrate into the interlayer space (in this case, the exfoliation of a filler does not occur). With the use of montmorillonite samples with d001 > 2 nm with the packing of a modifier as paraffin-like mono- or bilayers, the catalyst is predominantly intercalated into the interlayer space of the layer silicate. As a result, in the course of polymerization, polyethylene is formed in the interlayer space of particles to facilitate the exfoliation of the filler in separate nanolayers. Conditions for the supporting of a catalyst onto organomodified montmorillonite, which prevent the transfer of the catalyst into solvent and the formation of a free polymer on the synthesis of nanocomposites under the conditions of suspension polymerization in n-heptane, were determined. The intercalation of a catalyst into the interlayer space of the particles of layered silicates and the exfoliation of filler particles in the course of the synthesis of composites were confirmed by X-ray diffraction analysis.  相似文献   

11.
Monte Carlo molecular simulations of the hydration of K-saturated Wyoming-type montmorillonite at constant stress in the NPzzT ensemble and at constant chemical potential in the grand canonical muVT ensemble, under basin-like conditions of 353 K and 625 bar, show a strong tendency of the K+ ions to adhere to the siloxane surface, forming predominant inner-sphere complexes with tetrahedral oxygen atoms and adsorbed water molecules. Simulations in the grand canonical ensemble predict that none of the K-montmorillonite hydrates, the one-, two-, and three-layer hydrates, are stable in this environment of high depth, temperature, and pressure. The most nearly stable configuration corresponds to the one-layer hydrate, characterized by a d001 spacing of 12.75 A, the adsorbed water being 60 molecules/layer or 180.83 mg of H2O/g of clay, an internal energy of -22.73 kcal/mol, an interlayer density of 0.365 g/mL, and a pressure tensor, Pzz, of 1999.9 bar. The interlayer structure consists of two close layers of water molecules 0.50 A from the midplane, with broad shoulders on the sides, the protons oriented toward the midplane and the siloxane surfaces, and the K+ ions close to the clay surfaces and on the interlayer midplane.  相似文献   

12.
13.
The crystal habit of fcc metal particles formed on an amorphous carbon film electrode in solution at different electrode potentials is discussed. The fcc metal particles have different crystallographic habits depending on applied electrode potential; that is, icosahedral and/or decahedral particles are formed at lower potentials, and fcc single-crystalline or polycrystalline particles at higher potentials. It was found that decahedra and icosahedra of Cu-Au alloy particles are formed in the potential region of underpotential deposition (UPD) of Cu at which only fcc Au single-crystalline particles and Au polycrystalline particles appear. This is attributed to the charge transfer from the UPD Cu ions to the Au overlayer of Cu-Au alloy particles. The formation of decahedral and icosahedral Cu-Au alloy particles depends on the composition of the Cu-Au alloy. On the basis of these results it was deduced that the contraction of the surface lattice of the growing particles is responsible for the formation of icosahedral and decahedral particles. Received: 25 February 1997 / Accepted: 21 April 1997  相似文献   

14.
Electrodeposition of the layered manganese oxide was conducted in a colloidal crystal template formed by self-assembly of polystyrene particles on an indium tin oxide substrate. The resulting macroporous film exhibited good pseudocapacitive behavior in neutral electrolyte, as a result of contributions of the surface of macropores and the interlayer space of the multilayered structure.  相似文献   

15.
New flame-retardant nano/micro particles of sizes ranging between 0.06 ± 0.01 and 1.70 ± 0.23 μm were formed by dispersion polymerization of the pentabromobenzyl acrylate monomer (PBBA) in methyl ethyl ketone as a continuous phase. The effect of various polymerization parameters, e.g., monomer concentration, initiator type and concentration, stabilizer concentration and crosslinker monomer concentration, on the size, size distribution and polymerization yield of the produced poly(pentabromobenzyl acrylate) particles has been elucidated. Poly(pentabromobenzyl acrylate)/polystyrene (PPBBA/PS) nano/micro blends of the contents of different PPBBA particles were prepared by mixing the PPBBA particles with a PS solution in methylene chloride, followed by evaporation of the methylene chloride from the mixture. The thermal stability of these blends was also studied.  相似文献   

16.
The adsorption of Rhodamine 3B (R3B) molecules in Wyoming Montmorillonite (Mont) particles suspended in water was studied by electronic absorption spectroscopy. Several adsorbed R3B species in the Mont tactoids were characterized from the observed changes in the absorption spectra by increasing the relative dye/clay concentration and the stirring time of the samples. R3B molecules can be adsorbed as monomeric units both in the water/clay interface and in the interlayer space, and head-to-tail R3B dimers and trimers were present in the external surface of Mont. The formation of internally adsorbed R3B monomers by the migration of the externally adsorbed species to the interlayer space leads to the deaggregation of the dye molecules in the external surface.  相似文献   

17.
It has recently been shown that the intercalation and subsequent in situ polymerization of organic monomers within the interlayer of clay minerals yields nanocomposites with novel material properties. We present results of plane-wave density functional theory (DFT) based investigations into the initial stages of the polymerization of methanal and ethylenediamine within the interlayer of sodium montmorillonite. Nucleophilic attack of the amine on the aldehyde is only observed when the aldehyde is protonated or coordinated to a metal ion. No evidence is found for the dissociation of water in the hydration sphere of the sodium counterions. The Br?nsted acidity of the hydroxyl groups present in the silicate layers is significantly affected by their proximity to sites of isomorphic substitution. However, the most obvious Br?nsted acid sources are shown to be unlikely to catalyze the reaction. Instead catalysis is shown to occur at the clay mineral lattice-edge where hydroxyl groups and exposed aluminum ions act as strong Br?nsted and Lewis acid sites, respectively.  相似文献   

18.
The interaction of water with a synthetic saponite clay sample, with a layer charge of 1 per unit cell (0.165 C m(-2)), was investigated by following along water adsorption and desorption in the relative pressure range from 10(-6) to 0.99 (i) the adsorbed amount by gravimetric and near-infrared techniques, (ii) the basal distance and arrangement of water molecules in the interlayer by X-ray and neutron diffraction under controlled water pressure, and (iii) the molecular structure and interaction of adsorbed water molecules by near-infrared (NIR) and Raman spectroscopy under controlled water pressure. The results thus obtained were confronted with Grand Canonical Monte Carlo (GC/MC) simulations. Using such an approach, various well-distinct hydration ranges can be distinguished. In the two first ranges, at low water relative pressure, adsorption occurs on external surfaces only, with no swelling associated. The next range corresponds to the adsorption of water molecules around the interlayer cation without removing it from its position on top of the ditrigonal cavity of the tetrahedral layer and is associated with limited swelling. In the following range, the cation is displaced toward the mid-interlayer region. The interlamellar spacing thus reached, around 12.3 A, corresponds to what is classically referred to as a "one-layer hydrate," whereas no water layer is present in the interlayer region. The next hydration range corresponds to the filling of the interlayer at nearly constant spacing. This leads to the formation of a well-organized network of interlayer water molecules with significant interactions with the clay layer. The structure thus formed leads to a complete extinction of the d001 line in D2O neutron diffraction patterns that are correctly simulated by directly using the molecular configurations derived by GC/MC. The next range (0.50 < P/P0 < 0.80) corresponds to the final swelling of the structure to reach d spacing values of 15.2 A (usually referred to the "two-layer hydrate"). It is associated with the development of a network of liquidlike water molecules more structured than in bulk water. The final hydration range at high relative pressure mainly corresponds to the filling of pores between clay particles.  相似文献   

19.
The aim of this study was to carry out kinetic, thermodynamic, and surface characterization of the sorption of Cs+ ions on natural minerals of kaolinite and clinoptilolite. The results showed that sorption followed pseudo-second-order kinetics. The activation energies were 9.5 and 13.9 kJ/mol for Cs+ sorption on kaolinite and clinoptilolite, respectively. Experiments performed at four different initial concentrations of the ion revealed that the percentage sorption of Cs+ on clinoptilolite ranged from 90 to 95, compared to 28 to 40 for the kaolinite case. At the end of a 1 week period, the percentage of Cs+ desorption from clinoptilolite did not exceed 7%, while it amounted to more than 30% in kaolinite, indicating more stable fixation by clinoptilolite. The sorption data were best described using Freundlich and D-R isotherm models. Sorption showed spontaneous and exothermic behavior on both minerals, with deltaH(0) being -6.3 and -11.4 kJ/mol for Cs+ uptake by kaolinite and clinoptilolite, respectively. Expanding the kaolinite interlayer space from 0.71 to 1.12 nm using DMSO intercalation, did not yield a significant enhancement in the sorption capacity of kaolinite, indicating that the surface and edge sites of the clay are more energetically favored. EDS mapping and elemental analysis of the surface of kaolinite and clinoptilolite revealed more intense signals on the surface of the latter with an even distribution of sorbed Cs+ onto the surfaces of both minerals.  相似文献   

20.
Gold particles were nucleated on functionalized (i.e., sulfonate or imidazole groups) latex particle surfaces. Gold ions were associated with the functional groups present on the surface of the latex particles by metal‐ligand formation and were then reduced to nucleate gold particles on the particle surface. The use of imidazole groups favored the metal‐ligand formation more effectively compared with sulfonic acid groups, so gold nucleation was investigated on the surface of imidazole‐functionalized model latex particles. The desorption of gold atoms or their surface migration first occurred during the reduction process and then gold nanoparticles were nucleated. The utilization of strong reductants, such as NaBH4 and dimethylamine borane (DMAB) under mildly acidic conditions (i.e., pH 4) led to the deprotonation of imidazole‐rich polymer chains present on the surface of the model latex particles followed by deswelling of hydrophilic polymer surface layers. As a result, well‐dispersed gold nanoparticles were embedded in the hydrophilic polymer surface. On the other hand, the use of weak reductants led to the formation of localized gold aggregates on the surface of the latex particles. The removal of residual styrene monomer is very important because gold ions can be coordinated with the vinyl groups present in styrene monomer and would then be reduced by nucleophilic water addition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 912–925, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号