首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present measurements of the changes in the microscopic structure of graphite in a laser-driven shock experiment with X-ray scattering. Laser radiation with intensities of ∼2 × 1013 W/cm2 compressed the carbon samples by a factor of two reaching pressures of ∼90 GPa. Due to the change of the crystalline structure the scattered signals of the probe radiation were modified significantly in intensity and spectral composition compared to the scattering on cold samples. It is shown that the elastic scattering on tightly bound electrons increases strongly due to the phase transition whereas the inelastic scattering on weakly bound electrons remains nearly unchanged for the chosen geometry.  相似文献   

2.
3.
X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. X-ray laser sources have always been of interest because of the need to have a bright monochromatic X-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the X-ray free electron laser (X-FEL) at the SNAL Linac Coherent Light Source (LCLS) and other facilities coming online worldwide, we now have such a source available in the keV regime. An important challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas. Most Thomson scattering codes used to model experimental data greatly simplify or neglect the contributions of the bound electrons to the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion–ion scattering and inelastic electron–electron scattering and add the contribution of bound electrons in the partially ionized plasmas. Except for hydrogen plasmas, most plasmas studied today have bound electrons and it is important to understand their contribution to the Thomson scattering, especially as new X-ray sources such as an X-FEL will allow us to study much higher Z plasmas. To date, most experiments have studied hydrogen or beryllium plasmas. We first analyze existing experimental data for beryllium to validate the code. We then consider several higher Z materials such as Cr and predict the existence of additional peaks in the scattering spectrum that require new computational tools to understand. For a Sn plasma, we show that bound contributions change the shape of the scattered spectrum in a way that would change the plasma temperature and density inferred from experiment.  相似文献   

4.
The plasma conditions in isochorically heated beryllium are measured by collective x-ray Thomson scattering. The collectively scattered Cl Ly-α x-ray line at 2.96 keV shows up- and down-shifted plasmon signals. From the detailed balance relation, i.e., the ratio of the up-shifted to the down-shifted plasmon intensities, the plasma temperature can be determined independent of model assumptions. Results are shown for an experiment in which a temperature of 18 eV was measured. Using detailed balance for temperature measurement will be important to validate models that calculate the static ion–ion structure factor Sii(k).  相似文献   

5.
We determine the spectral photon yield from a hot dense plasma irradiated by VUV-FEL light in a Thomson scattering experiment. The Thomson signal is compared to the emission background mainly caused by bremsstrahlung photons. We determine experimental conditions that allow for a signal-to-background ratio larger than unity. By derivation of the Thomson and the bremsstrahlung spectrum from linear response theory we present a consistent quantum statistical approach to both processes. This allows for a systematic treatment of medium and quantum effects such as dynamical screening and strong collisions. Results are presented for the threshold FEL-intensity as a function of density and temperature. We show that the account for quantum effects leads to larger thresholds as compared to previous work.  相似文献   

6.
X-ray scattering is a powerful diagnostic technique that has been used in a variety of experimental settings to determine the temperature, density, and ionization state of warm dense matter. In order to maximize the intensity of the scattered signal, the x-ray source is often placed in close proximity to the target plasma. Therefore, the interpretation of the experimental data can become complicated by the fact that the detector records photons scattered at different angles from points within the plasma volume. In addition, the target plasma that is scattering the x-rays can have significant temperature and density gradients. To address these issues, we have developed the capability to simulate x-ray scattering for realistic experimental configurations where the effects of plasma non-uniformities and a range of x-ray scattering angles are included. We will discuss the implementation details and show results relevant to previous and ongoing experimental investigations.  相似文献   

7.
We have carried out X-ray scattering experiments on iron foil samples that have been compressed and heated using laser-driven shocks created with the VULCAN laser system at the Rutherford-Appleton Laboratory. This is the highest Z element studied in such experiments so far and the first time scattering from warm dense iron has been reported. Because of the importance of iron in telluric planets, the work is relevant to studies of warm dense matter in planetary interiors. We report scattering results as well as shock breakout results that, in conjunction with hydrodynamic simulations, suggest the target has been compressed to a molten state at several 100 GPa pressure. Initial comparison with modelling suggests more work is needed to understand the structure factor of warm dense iron.  相似文献   

8.
In the process of coal seam fracturing with liquid nitrogen (LN2), the change of coal pore structure has an important influence on the efficiency of coalbed methane (CBM) extraction. The nano-scale pore size distribution (PSD) in coal particles before and after freezing with LN2 are experimentally studied in this work. Coal samples are collected from four coal mines, where coal and gas outburst accidents have occurred. Small angle X-ray scattering technology (SAXS) and scanning electron microscopy (SEM) are used to study the pore structure changes of coal samples quantitatively and qualitatively. It is found that the scattering intensity of coal samples increases after freezing. The PSD of all samples significantly changes in the range of 0.8–7 nm, showing new pore spaces in 0.8–4 nm and fewer pores in the 4–7 nm range. Both the pore fractal dimension and the radius of gyration of coal samples increase after freezing and are mainly affected by the changes in pores and the anisotropy of the coal matrix. Crack expansion and pore connections are observed in the surface structure of the coal sample using SEM. This study provides a better understanding of the nano-scale mechanism of coal seam fracturing with LN2 for the prevention of coal and gas outbursts.  相似文献   

9.
Extreme states of matter such as Warm Dense Matter “WDM” and Dense Strongly Coupled Plasmas “DSCP” play a key role in many high energy density experiments, however, creating WDM and DSCP in a manner that can be quantified is not readily feasible. In this paper, isochoric heating of matter by intense heavy ion beams in spherical symmetry is investigated for WDM and DSCP research: the heating times are long (100 ns), the samples are macroscopically large (millimeter-size) and the symmetry is advantageous for diagnostic purposes. A dynamic confinement scheme in spherical symmetry is proposed which allows even ion beam heating times that are long on the hydrodynamic time scale of the target response. A particular selection of low-Z target tamper and X-ray probe radiation parameters allows to identify the X-ray scattering from the target material and use it for independent charge state measurements Z* of the material under study.  相似文献   

10.
A novel concept for using hybrid targets to create multi-keV X-ray sources was tested on the GEKKO XII facility of the OSAKA University and on the OMEGA facility of the University of Rochester. The sources were made via laser irradiation of a titanium foil placed at the end of a plastic cylinder, filled with a very low-density (2 and 5 mg/cm3) silicon-dioxide aerogel that was designed to control the longitudinal expansion of the titanium plasma. Preliminary calculations were used to determine optimal conditions for the aerogel density, cylinder diameter and length that maximize multi-keV X-ray emission. The X-ray emission power was measured on OMEGA using absolutely calibrated broad-band, diode-based CEA diagnostics, in addition to high resolution crystal spectrometers. On GEKKO XII, the heat wave propagation velocity in the aerogel was also measured with an X-ray framing camera. The advantage of using the thermal wave generated in the aerogel to heat a solid material to increase the conversion efficiency has not been fully demonstrated in these experiments. However, it was shown that a 5 mg/cm3 aerogel placed in front of a titanium foil can improve the x-ray conversion efficiency with respect to the case of 2 mg/cm3 for some target diameter and length.  相似文献   

11.
This review covers the progress of light scattering applications in the field of particle characterization in the past decade. The review addresses static light scattering (the measurement of scattering intensities due to light–particle interaction at various spatial locations), dynamic light scattering (the measurement of scattering due to light–particle interaction as a function of time), and scattering tracking analysis (the tracking of particle movement through scattering measurement).  相似文献   

12.
Recent calculations [Nilsen et al. arXiv:1212.5972] predict that contributions to the scattered photon spectrum from 3s and 3p bound states in chromium (Z = 24) at metallic density and T = 12 eV resonate below the respective bound-state thresholds. These resonances are shown to be closely related to continuum lowering, where 3d bound states in the free atom dissolve into a resonant l = 2 partial wave in the continuum. The resulting d-state resonance dominates contributions to the bound-free dynamic structure function, leading to the predicted resonances in the scattered X-ray spectrum. Similar resonant features are shown to occur in all elements in the periodic table between Ca and Mn (20 ≤ Z ≤ 25).  相似文献   

13.
研究弹性波散射与多重散射的T矩阵方法。首先,基于Helmholtz体内和体外公式推导了对应于圆柱型散射体的T矩阵元素的具体表达式;接着分析了在含多个随机分布圆柱型散射体的随机非均匀介质中弹性波的多重散射并给出在统计平均意义下的相干波的定义以及波速和衰减系数计算公式;最后,针对Ge/Al、Sic/Al复合材料用Matlab进行了编程和数值计算;计算单个柱型散射体的散射截面以及随机非均匀介质中相干波的速度和衰减系数,分析了这种介质的频散特性。  相似文献   

14.
The isotope effect of gaseous hydrogen under shock compression   总被引:1,自引:0,他引:1  
The shock compression method has been used to measure the Hugoniot data and shock temperature for gaseous hydrogen samples, covering the pressure range of 55-140 MPa and the temperature range of 3400-4500 K and with the initial conditions of P 0 = 0.6 MPa, 1.2 MPa and T 0 at room temperature. Spectral radiance histories emitted from shocked D 2 and H 2 + D 2 (equimolar mixture) are monitored by a pyrometer system with seven wavelength channels. Theoretical calculations based on the Saha model with Debye-Hückel correction for the shock compression behavior of shocked gaseous samples are in good agreement with the measured Hugoniot data, but show slightly higher values for the shock temperature when comparing with experiments. An isotope effect relevant to these shocked hydrogen species has been found in the linear shock velocity vs particle velocity relation, in which the correlation factor between these hydrogen isotopes or hydrogen mixtures is simply of initial density dependence.Received: 8 December 2002, Accepted: 8 May 2003, Published online: 2 September 2003PACS: 62.50 + p, 31.30.GS, 51.90. + r  相似文献   

15.
We investigate efficient methods to simulate the multiple scattering of obstacles in homogeneous media. With a large number of small obstacles on a large domain, optimized pieces of software based on spatial discretization such as Finite Element Method (FEM) or Finite Difference lose their robustness. As an alternative, we work with an integral equation method, which uses single-layer potentials and truncation of Fourier series to describe the approximate scattered field. In the theoretical part of the paper, we describe in detail the linear systems generated by the method for impenetrable obstacles, accompanied by a well-posedness study. For the numerical performance study, we limit ourselves to the case of circular obstacles. We first compare and validate our codes with the highly optimized FEM-based software Montjoie. Secondly, we investigate the efficiency of different solver types (direct and iterative of type GMRES) in solving the dense linear system generated by the method. We observe the robustness of direct solvers over iterative ones for closely-spaced obstacles, and that of GMRES with Lower–Upper Symmetric Gauss–Seidel and Symmetric Gauss–Seidel preconditioners for far-apart obstacles.  相似文献   

16.
IntroductionAninverseproblemofconsiderableimportanceinvariousfieldsofengineeringtechnology ,suchasnondestructivetesting ,medicalimaging ,remotesensingandseismicimaging ,istodeterminetheshapeofascatteringobjectfromitsfar_fieldeffectsontheacousticscatteringwaves.However,thiskindofproblemisparticularlydifficulttosolvesinceitisbothnonlinearandill_posed[1].Fortunately ,therehavebeenseveralmethodsdevelopedforsolvingnumericallytheinverseproblemduringthelastdecade .Ofparticularimportancearenonlinearop…  相似文献   

17.
As multi-keV X-ray sources, seven targets including thick and thin foils, metal-lined halfraums and a foil combined with a plastic cylinder, have been shot on Omega in September 2011. Titanium was used as X-ray emitting material for all the sources. Using experimental data and FCI2 simulation results, we have, for each source type, characterized the emission lobes and determined the spatial directions of maximum multi-keV energy. These results demonstrate the benefit of using a laser drive with a pre-pulse for both thick and thin foils. The favorable effect of a confinement cylinder for the X-ray emitted from front side by a thin foil has also been experimentally found but is not yet confirmed by the simulations. The temporal waveforms of the X-ray power obtained from the different sources as well as the emission spots at the times of maximum emission are also compared.  相似文献   

18.
Slotted breakwaters have been used to provide economical protection from waves in harbors where surface waves and currents may co-exist. In this paper, the effects of currents on the wave scattering by slotted breakwaters are investigated by using a simple model. The model is based on a long wave approximation. The effects of wave height, barrier geometry and current strength on the reflection and transmission coefficients are examined by the model. The model results are compared with recent experimental data. It is found that both the wave-following and wave-opposing currents can increase the reflection coefficient and reduce the transmission coefficient. The model can be used to study the interaction between long waves and slotted breakwaters in coastal waters. The project partially supported by the Hong Kong Research Grant Council under Grant No. HKUST-DAG03/04.EG39 and HKUST6227/04E.  相似文献   

19.
斜波压缩台阶靶实验中,不同厚度界面粒子速度历史与材料压缩特性参数存在联系。然而利用普遍采用的数据处理方法无法直接获得该联系。本文中借助特征线理论在建立上述关联的基础上,实现未知EOS下斜波压缩流场的直接计算过程。经数值计算表明,该方法不仅在无强度效应数据处理中能够准确计算理论值,而且在含有强度效应数据处理中也能够较好地逼近理论值,并可在真实实验数据处理中获得与文献符合较好的结果。该研究可为探索具有较完整理论的强度效应数据处理方法提供新途径。  相似文献   

20.
The wave scattering method is presented to analyze dynamic response of frameworks with stochastic parameters. First, with the uncertain physical, geometric, and loading properties in consideration, the stochastic waveguide equations containing the axial, torsional and flexural wave modes are established. Second, the stochastic wave scattering equation and wave translation matrix are derived to obtain the wave modes. Third, the methodology to extract the generalized displacements and forces from stochastic wave modes is proposed. Finally, a cantilever beam, a planar framework, and a space framework have been presented as numerical examples to illustrate the e?ciency of the proposed method. It is found that the results obtained by the proposed method with higher computational e?ciency show an excellent agreement with those by Monte Carlo simulation method. Furthermore, the influences of stochastic parameters on dynamic response are revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号