首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shock compression was used to produce the first observation of a metallic state of condensed hydrogen. The conditions of metallization are a pressure of 140 GPa (1.4 Mbar), 0.6 g/cm (ninefold compression of initial liquid-H density), and 3000 K. The relatively modest temperature generated by a reverberating shock wave produced the metallic state in a warm fluid at a lower pressure than expected previously for the crystallographically ordered solid at low temperatures. The relatively large sample diameter of 25 mm permitted measurement of electrical conductivity. The experimental technique and data analysis are described. Received 12 November 1997 / Accepted 10 November 1998  相似文献   

2.
3.
We report on the characterisation of the upstream medium ahead of a radiative cylindrical blast wave launched in an argon cluster gas with a 1 J, 1 ps, 1054 nm Nd:Glass laser system. By launching two perpendicular blast waves and introducing a time delay between the heating beams it is possible to determine the extent of the cluster medium by observing the high energy absorption region associated with clusters, as apposed to the low energy deposition in monatomic gas. It was found that argon ions launched from the initial laser driven cluster ionisation created a ballistic ion wave which sweeps out ahead of the hydrodynamic blast wave at an initial velocity of 1000 kms−1. This ballistic wave disassembles the clusters ahead of the blast wave into a neutral gas medium before the arrival of a radiative precursor. This observation gives us confidence that the dynamics of a radiative blast wave in cluster based experiments is determined primarily by the properties of an upstream atomic gas, and is not significantly influenced by cluster affects on energy transport or other material properties.  相似文献   

4.
王帅  姚寅  杨亚政  陈少华 《力学学报》2017,49(5):978-984
界面能密度是表征纳米复合材料与结构界面力学性质的重要物理量.采用分子动力学方法计算了不同面心立方金属晶体构成的双材料纳米薄板结构的界面能密度,分析了界面晶格结构形貌变化及界面效应对原子势能的影响.结果表明:双材料纳米薄板界面具有周期性褶皱状疏密相间的晶格结构形貌,界面上原子势能亦呈现周期性分布特性,而靠近界面的两侧原子势能与板内原子势能具有明显差异.拉格朗日界面能密度和欧拉界面能密度均随双层薄板厚度的增加而增加,最终趋向于块体双材料结构的界面能密度.  相似文献   

5.
In an effort to better understand mix in Inertial Confinement Fusion (ICF) implosion cores, a series of laser-driven mix experiments has been designed for the University of Rochester's OMEGA laser. Our objective is to perform experiments to investigate the turbulent mixing at material interfaces when subject to multiple shocks and reshocks or high-speed shear. Ultimately, these experiments are providing detailed quantitative measurements to assist in validation efforts for the BHR-2 mix model, which is implemented in the RAGE hydrodynamics code. The Reshock experiment studies the physical process of shocking and reshocking mix layers. Radiographs are recorded to compile a temporal evolution of the mixing layer and its subsequent reshock, compression, and re-growth phases. The Shear experiment investigates shear-driven growth of a mix layer, and radiography captures the time evolution of the development of turbulent mixing due to shear. Simulations of both the Reshock and Shear experiments using RAGE and the BHR-2 mix model demonstrate good agreement with the mix evolution seen in the experimental data, giving confidence that BHR-2 is capable of simulating the behavior of both compressive and shear-driven turbulent flows.  相似文献   

6.
This paper examines impact forces resulting from wave-in-deck processes from two separate series of experiments: one with a generic solid deck model, and the other with a combined jacket and deck model, both were conducted with and without an I-beam grillage in-place below the solid deck. A range of inundation levels from 2.1 to 7.1 cm at 1:80 scale is considered. The focus is on global impact forces, which are considered more relevant for integrity assessment of overall bottom-founded structures when survivability is in question and local slamming is not addressed. The objective is to characterise the resultant impact forces as well as to investigate whether there is any interaction between the flows through the jacket and hitting the deck. Focussed wave groups were generated to impinge on the models which were suspended from a carriage over a towing tank. The motion of the support carriage mimics uniform current in-line with the incident waves. Both undisturbed surface elevations as well as impact force time histories were measured. From the first series of tests, a large increase in peak forces as well as high frequency oscillations (force spikes) is observed with the grillage in-place. As soon as the jacket model is in-place for the second series of tests, albeit with a different mounting support arrangement, such a large difference vanishes, which could likely be due to the effect of frequency-dependent transfer functions. We provide experimental evidence of the presence of the jacket in modifying the wave impact on the deck through a significant reduction in the total horizontal impulse. The effects of current on the wave impact forces are also investigated. A simple analytical model based on a momentum argument is used to describe the scaling of horizontal peak force with currents and inundation levels. Finally, the importance of the short duration force spikes as well as vertical impact loads on a real structure at full-scale is discussed based on the same analytical model.  相似文献   

7.
A series of experiments on bubbling behavior in particle beds was performed to clarify three-phase flow dynamics in debris beds formed after core-disruptive accident (CDA) in sodium-cooled fast breeder reactors (FBRs). Although in the past, several experiments have been performed in packed beds to investigate flow patterns, most of these were under comparatively higher gas flow rate, which may be not expected during an early sodium boiling period in debris beds. The current experiments were conducted under two dimensional (2D) and three dimensional (3D) conditions separately, in which water was used as liquid phase, and bubbles were generated by injecting nitrogen gas from the bottom of the viewing tank. Various particle-bed parameters were varied, including particle-bed height (from 30 mm to 200 mm), particle diameter (from 0.4 mm to 6 mm) and particle type (beads made of acrylic, glass, alumina and zirconia). Under these experimental conditions, three kinds of bubbling behavior were observed for the first time using digital image analysis methods that were further verified by quantitative detailed analysis of bubbling properties including surface bubbling frequency and surface bubble size under both 2D and 3D conditions. This investigation, which hopefully provides fundamental data for a better understanding and an improved estimation of CDAs in FBRs, is expected to benefit future analysis and verification of computer models developed in advanced fast reactor safety analysis codes.  相似文献   

8.
Airborne inhalable particles are a potent environmental pollutant. Formed via industrial processes, separation of these particles is difficult using conventional clean up techniques. In this work, solid nuclei particles of different chemical compositions were introduced into an agglomeration chamber with simulated flue gases to investigate their ability to remove these particles. Organic nuclei were able to capture more inhalable particles from coal-derived fly ash than inorganic nuclei, though these proved more effective for the agglomeration of inhalable particles in refuse-derived fly ash. Increasing the diameter of the solid nuclei benefitted the agglomeration process for both types of ash. Varying the local humidity changed adhesion between the particles and encouraged them to aggregate. Increasing the relative humidity consistently increased particle agglomeration for the refuse-derived ash. For coal-derived fly ash, the removal efficiency increased initially with relative humidity but then further increases in humidity had no impact on the relatively high efficiencies. After agglomeration in an atmosphere of 62% relative humidity, the mean mass diameter of inhalable particles in the coal-derived fly ash increased from 3.3 to 9.2 μm. For refuse-derived fly ash, agglomeration caused the percentage of particles that were less than 2 μm to decrease from 40% to 15%. After treatment at a relative humidity of 61%, the mean size of inhalable particles exceeded 10 μm.  相似文献   

9.
郭伟国 《实验力学》2005,20(4):635-639
首先对PVDF(polyvinylidene fluoride)压电薄膜在不同温度不同压力作用下的响应进行了系统的试验研究。然后在Hopkinson压杆系统的透射杆之间夹上PVDF压电薄膜,对其动态响应进行了检验。最后应用这个镶嵌PVDF压电薄膜的Hopkinson压杆系统,测试了泡沫铜材料在不同应变率下的应力应变关系。结果表明:(1)PVDF压电薄膜的压电常数D33是随温度和压力而变,实际应用时应对其进行标定;(2)PVDF压电薄膜可有效的用于Hopkinson压杆系统来测试低强度泡沫材料或低阻抗材料的动态响应;(3)当应变率小于0.1/s时,泡沫铜的塑性流动应力对应变率不敏感,在约400/s到5000/s应变率范围,应变小于40%下泡沫铜对应变率也不敏感。但当应变大于约20%,应变率高于400/s时,与低应变率下的值比较,塑性流动应力的应变率敏感性增加。  相似文献   

10.
The generalized thermo-elasticity theory, i.e., Green and Naghdi (G-N) Ⅲ theory, with energy dissipation (TEWED) is employed in the study of time-harmonic plane wave propagation in an unbounded, perfectly electrically conducting elastic medium subject to primary uniform magnetic field. A more general dispersion equation with com- plex coefficients is obtained for coupled magneto-thermo-elastic wave solved in complex domain by using the Leguerre's method. It reveals that the coupled magneto-thermoelastic wave corresponds to modified dilatational and thermal wave propagation with finite speeds modified by finite thermal wave speeds, thermo-elastic coupling, thermal diffusivity, and the external magnetic field. Numerical results for a copper-like material are presented.  相似文献   

11.
为了分析血液-血管耦合运动所产生血液脉动压力载荷对血管壁应力分布的影响,利用线性化的血液-血管耦合运动方程的Womersley解,导得血液脉动压力载荷下的血管壁Green应变,同时利用Fung的血管壁应变能密度函数,导得相应血管壁应力分布的一般表达式.数值结果表明,在脉动流条件下,当考虑血液-血管耦合运动时,血管壁中周向应力最大,轴向应力居中,径向应力最小;血管壁的残余应力将明显减小血管内壁的应力集中;脉动压力载荷将导致血管壁周向应力在一个心动周期中随时间的脉动,而且随着Womersley数α和血管轴向约束参数K~*的增大,血管壁周向应力的脉动将明显加剧,提示在分析动脉重建时必须计及血液-血管耦合运动对血管壁应力分布的影响.  相似文献   

12.
The anti-plane problem of an elliptical inhomogeneity with an interfacial crack in piezoelectric materials is investigated. The system is subjected to arbitrary singularity loads (point charge and anti-plane concentrated force) and remote anti-plane mechanical and in-plane electrical loads. Using the complex variable method, the explicit series form solutions for the complex potentials in the matrix and the inclusion regions are derived. The electroelastic field intensity factors, the corresponding energy release rates and the generalized strain energy density at the cracks tips are then provided. The influence of the aspect ratio of the ellipse, the crack geometry and the electromechanical coupling coefficient on the energy release rate and the strain energy density is discussed and shown in graphs. The results indicate that the energy release rate increases with increment of the aspect ratio of the ellipse and the influence of electromechanical coupling coefficient on the energy release rate is significant. The strain energy density decreases with increment of the aspect radio of the ellipse and it is always positive for the cases discussed. The energy release rate, however, can be negative when both mechanical and fields are applied.  相似文献   

13.
We study properties of dynamic ruptures and the partition of energy between radiation and dissipative mechanisms using two-dimensional in-plane calculations with the finite element method. The model consists of two identical isotropic elastic media separated by an interface governed by rate- and state-dependent friction. Rupture is initiated by gradually overstressing a localized nucleation zone. Different values of parameters controlling the velocity dependence of friction, the strength excess parameter and the length of the nucleation zone, lead to the following four rupture modes: supershear crack-like rupture, subshear crack-like rupture, subshear single pulse and supershear train of pulses. High initial shear stress and weak velocity dependence of friction favor crack-like ruptures, while the opposite conditions favor the pulse mode. The rupture mode can switch from a subshear single pulse to a supershear train of pulses when the width of the nucleation zone increases. The elastic strain energy released over the same propagation distance by the different rupture modes has the following order: supershear crack, subshear crack, supershear train of pulses and subshear single pulse. The same order applies also to the ratio of kinetic energy (radiation) to total change of elastic energy for the different rupture modes. Decreasing the dynamic coefficient of friction increases the fraction of stored energy that is converted to kinetic energy. General considerations and observations suggest that the subshear pulse and supershear crack are, respectively, the most and least common modes of earthquake ruptures.  相似文献   

14.
In this paper, the authors investigate a class of fast-diffusion p-Laplace equation, which was considered by Li, Han and Li (2016) [1], where, among other things, blow-up in finite time of solutions was proved for positive but suitably small initial energy. Their results will be complemented in this paper in the sense that the existence of finite time blow-up solutions for arbitrarily high initial energy will be proved. Moreover, an abstract criterion for the existence of global solutions that vanish at infinity will also be provided for high initial energy.  相似文献   

15.
The temperature and stress field in a thin plate with collinear cracks interrupting an electric current field are determined. This is accomplished by using a complex function method that allows a direct means of finding the distribution of the electric current, the temperature and stress field. Temperature dependency for the heat-transfer coefficient, coefficient of linear expansion and the elastic modulus are considered. As an example, temperature distribution is calculated for an alloy (No. GH2132) plate with two collinear cracks under high temperature. Relationships between the stress, temperature, electric density and crack length are obtained. Crack trajectories emanating from existing crack are predicted by application of the strain energy density criterion which can also be used for finding the load carrying capacity of the cracked plate.  相似文献   

16.
An elastic–plastic finite element model is developed for 3D orthogonal cutting of discontinuous chips. The tool is P20 while the workpiece is made of 6-4 brass. Examined under the condition of low cutting speed are the initial crack location, the direction of crack growth and variations of discrete chips. These predictions are made possible by application of the strain energy density (SED) theory. The initial crack was formed above the tool tip and grew progressively along the stationary values of the SED function until the trajectory intersects with the free surface. The plastic deformation and friction result in a high equivalent stress in the secondary deformation zone of the first longitudinal chip. Stresses are also high at the location of crack initiation. The chip node near the tool face is sensitive to the contact of the tool face. As more residual stress prevails after the first longitudinal cut, degradation of the workpiece surface prevails and should be accounted for.  相似文献   

17.
LiFePO4/C microspheres with different surface morphologies and porosities were prepared from different carbon sources. The effects of the surface morphology and pore structure of the microspheres on their electrochemical properties and electrode density were investigated. The electrochemical performance and electrode density depended on the morphology and pore structure of the LiFePO4/C microspheres. Open-pore LiFePO4/C microspheres with rough surfaces exhibited good adhesion with current collectors and a high electrode density (2.6 g/cm3). They also exhibited high performance in a half cell and full battery with a high volumetric energy density.  相似文献   

18.
The solution for an elliptical cavity in an infinite two-dimensional magnetoelectroelastic medium subject to remotely uniformly applied combined mechanical–electric–magnetic loadings is obtained by using the Stroh formalism and the exact boundary conditions along the surface of the cavity. By letting the minor-axis of the cavity to zero the solution for a crack is deduced. A self-consistent method is proposed to calculate the real crack opening under the combined mechanical–electric–magnetic loadings. The method requires that the crack opening is the minor-axis of the elliptical opening profile. Beside the real crack solution, four different extreme models, i.e., the impermeable crack, permeable crack, electrically impermeable and magnetically permeable crack and electrically permeable and magnetically impermeable crack, are discussed. An expression of the strain energy density factor is derived. Numerical results of the strain energy density at the crack tip are given for a BaTiO3–CoFe2O4 composite with the piezoelectric BaTiO3 material being the inclusion and the magnetostrictive CoFe2O4 material being the matrix. The effects of the proportion of the two phases, permeability of the crack to electric and magnetic fields, the electric and magnetic loadings on the strain energy density factor are discussed.  相似文献   

19.
A technique is proposed to estimate the energy density as fracture toughness for ductile bulk materials with an indentation system equipped with a Berkovich indenter based on the theory of plastic deformation energy transforming into the indentation energy of fracture. With progressive increase of penetration loads, the material damage is exhibited on the effective elastic modulus. A quadratic polynomial relationship between the plastic penetration depth and penetration load, and an approximate linear relationship between logarithmic plastic penetration depth and logarithmic effective elastic modulus are exhibited by indentation investigation with Berkovich indenter. The parameter of damage variable is proposed to determine the critical effective elastic modulus at the fracture point. And the strain energy density factor is calculated according to the equations of penetration load, plastic penetration depth and effective elastic modulus. The fracture toughness of aluminum alloy and stainless steel are evaluated by both indentation tests and KIC fracture toughness tests. The predicted Scr values of indentation tests are in good agreement with experimental results of CT tests.  相似文献   

20.
The electroelastic interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity containing a confocal blunt crack under infinite longitudinal shear and in-plane electric field is investigated. Using the sectionally holomorphic function theory, Cauchy singular integral, singularity analysis of complex functions and theory of Rieman boundary problem, the explicit series solution of stress field is obtained when the screw dislocation is located in inhomogeneity. The intervention law of the interaction between blunt crack and screw dislocation in inhomogeneity is discussed. The analytical expressions of generalized stress and strain field of inhomogeneity are calculated, while the image force, field intensity factors of blunt crack are also presented. Moreover, a new matrix expression of the energy release rate and generalized strain energy density (SED) are deduced. With the size variation of blunt crack, the results can be reduced to the case of the interaction between a piezoelectric screw dislocation and a line crack in inhomogeneity. Numerical analysis are then conducted to reveal the effects of the dislocation location, the size of inhomogeneity and blunt crack and the applied load on the image force, energy release rate and strain energy density. The influence of dislocation on energy release rate and strain energy density is also revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号