首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
When steady supersonic flow hits a slim wedge, there may appear an oblique transonic shock attached to the vertex of the wedge, if the downstream pressure is rather large. This paper studies stability in certain weighted partial Hölder spaces of the oblique transonic shock attached to the vertex of a wedge, which is against steady supersonic flows, under perturbations of the upstream flow and the profile of the wedge. We show that under reasonable conditions on the upcoming supersonic flow and the slope of the wedge, such transonic shocks are structural stable. Mathematically, we solve an elliptic–hyperbolic mixed type in an unbounded domain, and the flow field is proved to be C1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We study the stability of transonic shocks in steady supersonic flow past a wedge. It is known that in generic case such a problem admits two possible locations of the shock front, connecting the flow ahead of it and behind it. They can be distinguished as supersonic–supersonic shock and supersonic–subsonic shock (or transonic shock). Both these possible shocks satisfy the Rankine–Hugoniot conditions and the entropy condition. We prove that the transonic shock is conditionally stable under perturbation of the upstream flow or perturbation of wedge boundary. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is devoted to studying the local structure of Mach reflection, which occurs in the problem of the shock front hitting a ramp. The compressible flow is described by the full unsteady Euler system of gas dynamics. Because of the special geometry, the motion of the fluid can be described by self-similar coordinates, so that the unsteady flow becomes a pseudo-stationary flow in this coordinate system. When the slope of the ramp is less than a critical value, the Mach reflection occurs. The wave configuration in Mach reflection is composed of three shock fronts and a slip line bearing contact discontinuity. The local existence of a flow field with such a configuration under some assumptions is proved in this paper. Our result confirms the reasonableness of the corresponding physical observations and numerical computations in Mach reflection.

In order to prove the result, we formulate the problem to a free boundary value problem of a pseudo-stationary Euler system. In this problem two unknown shock fronts are the free boundary, and the slip line is also an unknown curve inside the flow field. The proof contains some crucial ingredients. The slip line will be transformed to a fixed straight line by a generalized Lagrange transformation. The whole free boundary value problem will be decomposed to a fixed boundary value problem of the Euler system and a problem to updating the location of the shock front. The Euler system in the subsonic region is an elliptic-hyperbolic composite system, which will be decoupled to the elliptic part and the hyperbolic part at the level of principal parts. Then some sophisticated estimates and a suitable iterative scheme are established. The proof leads to the existence and stability of the local structure of Mach reflection.

  相似文献   


4.
In 1968 S.M. Ulam proposed the problem: “When is it true that by changing a little the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or approximately true?’’. In 1978 according to P.M. Gruber this kind of problems is of particular interest in probability theory and in the case of functional equations of different types. In 1997 W. Schuster established a new vector quadratic identity on the basis of the well-known Euler type theorem on quadrilaterals: If ABCD is a quadrilateral and M, N are the mid-points of the diagonals AC, BD as well as A′, B′, C′, D′ are the mid-points of the sides AB, BC, CD, DA, then |AB|2 + |BC|2 + |CD|2 + |DA|2 = 2|A′C′|2 + 2|B′D′|2 + 4|MN|2. Employing in this paper the above geometric identity we introduce the new Euler type quadratic functional equation
$\begin{array}{l}2{[}Q(x_{0} - x_{1}+Q(x_{1}-x_{2})+Q(x_{2}- x_{3})+Q(x_{3}-x_{0}){]}\\\qquad = Q(x_{0}-x_{1}-x_{2}+x_{3})+Q(x_{0} + x_{1}-x_{2}-x_{3})+2Q(x_{0}-x_{1}+ x_{2}-x_{3})\end{array}$
for all vectors (x0, x1, x2, x3) X4, with X and Y linear spaces. For every xR set Q(x) = x2. Then the mapping Q : XY is quadratic. Note also that if Q : RR is quadratic, then we have Q(x) = Q(1)x2. Besides note that the geometric interpretation of the special example
$\begin{array}{l}2{[}(x_{0} - x_{1})^{2}+ (x_{1}-x_{2})^{2}+ (x_{2}-x_{3})^{2}+(x_{3}-x_{0})^{2}{]}\\\qquad = (x_{0}-x_{1}-x_{2} + x_{3})^{2}+(x_{0} + x_{1}-x_{2}-x_{3})^{2} + 2(x_{0}-x_{1}+ x_{2}-x_{3})^{2}\end{array}$
leads to the above-mentioned Euler type theorem on quadrilaterals ABCD with position vectors x0, x1, x2, x3 of vertices A, B, C, D, respectively. Then we solve the Ulam stability problem for the afore-mentioned equation, with non-linear Euler type quadratic mappings Q : XY.
  相似文献   

5.
In this paper,we study two-dimensional Riemann boundary value problems of Euler system for the isentropic and irrotational Chaplygin gas with initial data being two constant states given in two sectors respectively,where one sector is a quadrant and the other one has an acute vertex angle.We prove that the Riemann boundary value problem admits a global self-similar solution,if either the initial states are close,or the smaller sector is also near a quadrant.Our result can be applied to solving the problem of shock reflection by a ramp.  相似文献   

6.
In this paper we establish the existence of global continuous solutions of gas expansion into a vacuum for the two-dimensional pressure-gradient equations in gas dynamics. Under irrotational condition, By hodograph transformation, the flow is governed by the equation (pp2v)puu+2pupvpuv+(pp2u)pvv=0, which can be further reduced to a inhomogeneous linearly degenerate system of three equations. Then the problem of the expansion of a wedge of gas into a vacuum is solved in the same way.  相似文献   

7.
We characterize a class of physical boundary conditions that guarantee the existence and uniqueness of the subsonic Euler flow in a general finitely long nozzle.More precisely,by prescribing the incoming flow angle and the Bernoulli’s function at the inlet and the end pressure at the exit of the nozzle,we establish an existence and uniqueness theorem for subsonic Euler flows in a 2-D nozzle,which is also required to be adjacent to some special background solutions.Such a result can also be extended to the 3-D asymmetric case.  相似文献   

8.
We consider the 2D Euler equation of incompressible fluids on a strip ?×𝕋 and prove the stability of the rectangular stationary state χ|x|<L for large enough L.  相似文献   

9.
We investigate stability of multidimensional planar shock profiles of a general hyperbolic relaxation system whose equilibrium model is a system, under the necessary assumption of spectral stability and a standard set of structural conditions that are known to hold for many physical systems. Our main result, generalizing the work of Kwon and Zumbrun in the scalar relaxation case, is to establish the bounds on the Green?s function for the linearized equation and obtain nonlinear L2 asymptotic behavior/sharp decay rate of perturbed weak shock profiles. To establish Green?s function bounds, we use the semigroup approach in the low-frequency regime, and use the energy method for the high-frequency bounds, separately. For the system equilibrium case, the analysis of the linearized equation is complicated due to glancing phenomena. We treat this difficulty similarly as in the inviscid and viscous systems, under the constant multiplicity condition.  相似文献   

10.
We provide a new method for treating free boundary problems in perfect fluids, and prove local-in-time well-posedness in Sobolev spaces for the free-surface incompressible 3D Euler equations with or without surface tension for arbitrary initial data, and without any irrotationality assumption on the fluid. This is a free boundary problem for the motion of an incompressible perfect liquid in vacuum, wherein the motion of the fluid interacts with the motion of the free-surface at highest-order.

  相似文献   


11.
In this paper, we mainly study the nonlinear wave configuration caused by shock wave reflection for the TSD (Transonic Small Disturbance) equation and specify the existence and nonexistence of various nonlinear wave configurations. We give a condition under which the solution of the RR (Regular reflection) for the TSD equation exists. We also prove that there exists no wave configuration of shock wave reflection for the TSD equation which consists of three or four shock waves. In phase space, we prove that the TSD equation has an IR (Irregular reflection) configuration containing a centered simple wave. Furthermore, we also prove the stability of RR configuration and the wave configuration containing a centered simple wave by solving a free boundary value problem of the TSD equation.  相似文献   

12.
The vortex method for the initial-boundary value problems of the Euler equations for incompressible flow is studied. A boundary correction technique is introduced to generate second order accuracy. Convergence and error estimates are proved.

  相似文献   


13.
This paper is devoted to the study of a transonic shock in three-dimensional steady compressible flow passing a duct with a general section. The flow is described by the steady full Euler system, which is purely hyperbolic in the supersonic region and is of elliptic-hyperbolic type in the subsonic region. The upstream flow at the entrance of the duct is a uniform supersonic one adding a three-dimensional perturbation, while the pressure of the downstream flow at the exit of the duct is assigned apart from a constant difference. The problem to determine the transonic shock and the flow behind the shock is reduced to a free boundary value problem of an elliptic-hyperbolic system. The new ingredients of our paper contain the decomposition of the elliptic-hyperbolic system, the determination of the shock front by a pair of partial differential equations coupled with the three-dimensional Euler system, and the regularity analysis of solutions to the boundary value problems introduced in our discussion.

  相似文献   


14.
The shock wave in a viscous gas which is treated as a strong discontinuity is unstable against small perturbations [A.M. Blokhin, On stability of shock waves in a compressible viscous gas, Matematiche LVII (I) (2002) 3-19]. We suggest such additional boundary conditions that a modified (with account to these conditions) linear initial-boundary value problem on stability of the shock wave does not admit Hadamard-type ill-posedness examples.  相似文献   

15.
The analytical solutions of the Riemann problem for the isentropic Euler system with the logarithmic equation of state are derived explicitly for all the five different cases. The concentration and cavitation phenomena are observed and analyzed during the process of vanishing pressure in the Riemann solutions. It is shown that the solution consisting of two shock waves converges to a delta shock wave solution as well as the solution consisting of two rarefaction waves converges to a solution consisting of four contact discontinuities together with vacuum states with three different virtual velocities in the limiting situation.  相似文献   

16.
隐式Euler法关于Volterra延迟积分方程的数值稳定性   总被引:3,自引:0,他引:3  
张诚坚  高健 《应用数学》2000,13(4):130-132
本文涉及隐式Euler法应用于非线性Volterra型延迟积分方程的稳定性,其探讨了基于非经典Lipschitz条件,其方法的整体与渐近稳定性结果被获得。  相似文献   

17.
We consider the Euler transform for a class of Pfaffian systems. We show that the form of a system of the class is invariant under the Euler transform with respect to one variable analogously to the system of Okubo normal form.  相似文献   

18.
This paper is concerned with nonlinear stability of traveling wave fronts for a delayed reaction diffusion system. We prove that the traveling wave front is exponentially stable to perturbation in some exponentially weighted L spaces, when the difference between initial data and traveling wave front decays exponentially as x→−, but the initial data can be suitable large in other locations. Moreover, the time decay rates are obtained by weighted energy estimates.  相似文献   

19.
Meizi Tong 《Applicable analysis》2013,92(15):2668-2687
The Riemann problem for the isentropic Euler system with the state equation for the extended Chaplygin gas is considered, and the Riemann solutions are constructed completely for all the cases. The limiting relations of Riemann solutions for the isentropic Euler system with the state equation from the extended Chaplygin gas to the Chaplygin gas are derived in detail when the corrected term tends to zero. The formation of delta shock wave solution and two-contact-discontinuity solution is investigated during the process of taking the limit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号