首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Er:YAG and the CO2 laser are competitors in the field of hard tissue ablation. The use of Er:YAG lasers (2.94 μm, pulse length L of 100 to 200 μs) show smaller areas of thermal defects then ‘‘superpulsed’’ CO2 lasers with pulse lengths of approximately 100 μs. Only the development of a Q-switched CO2 laser (9.6 μm, τL=250 ns) allowed for similar results. In this paper new results for the Er:YAG and the Q-switched CO2 laser under the influence of water spray will be presented. Several parameters are of special interest for these investigations: the specific ablation energy, which shows a minimum for the CO2 laser at an energy density of 9 J/cm 2 and a broad shallow minimum in the range of 10 to 70 J/cm2 for the Er:YAG laser, and comparison of the cut-shape and depth. Surface effects and cutting velocity are discussed based on SEM pictures. Received: 19 July 2000 / Revised version: 1 November 2000 / Published online: 30 November 2000  相似文献   

2.
Lasers for materials processing: specifications and trends   总被引:2,自引:0,他引:2  
An overview is given of the types of lasers dominating the field of laser materials processing. The most prominent lasers in this field are the CO2 and the Nd: YAG laser. The domain of CO2 lasers is applications which demand high laser powers (up to 30 kW are available at present), whereas the domain of Nd:YAG lasers is micro-machining applications. In the kilowatt range of laser output power, the two types of lasers are in competition. New diffusion-cooled CO2 laser systems are capable of output laser powers of several kilowatts, with good beam qualities, while still being quite compact. The output power and beam quality of Nd:YAG lasers has been improved in recent years, so that Nd:YAG lasers are now an alternative to CO2 lasers even in the kilowatt range. This is especially true for applications that demand optical fibre transmission of the laser beam, which is possible with Nd:YAG laser light but not with the longerwavelength light emitted by CO2 lasers. The main problem in solid-state lasers such as Nd:YAG is the thermal lensing effect and damage due to thermal stresses. In order to reduce thermal loading, cooling has to be enhanced. Several alternative geometries have been proposed to reduce thermal loading and, by this, thermal lensing effects. There are now slab and tube geometries which allow much higher output powers than the conventionally used laser rods. A very new scheme proposes a thin slab whose cooled side is also used as one of the laser mirrors, so that thermal gradients occur mainly in the direction of the beam propagation and not perpendicular to it, as is the case in the other geometries. As well as CO2 and Nd:YAG lasers, semiconductor laser diodes are very promising for direct use of the emitted light or as pump sources for Nd:YAG and other solid-state lasers. When packaging together thousands of single laser diodes, output powers of several kilowatts can be realized. Major problems are collimation of the highly divergent laser beams and cooling of the laser diode bars.  相似文献   

3.
We demonstrate monitoring of H2O and CO2 emitted in a volcanic area, using a spectrometer equipped with two distributed feedback (DFB) semiconductor diode lasers. Each laser is resonant with a molecular species and is fiber-coupled to allow remote operation of the spectrometer. Recordings of H2O and CO2 lines made at the Solfatara volcano, in southern Italy, are shown, and the application of such a spectrometer as a new tool for the continuous monitoring and surveillance of volcanoes is discussed. Received: 28 June 1999 / Revised version: 20 December 1999 / Published online: 23 February 2000  相似文献   

4.
A. K. Nath  V. S. Golubev 《Pramana》1998,51(3-4):463-479
Various criteria for designing high power convective cooled CO2 lasers have been discussed. Considering the saturation intensity, optical damage threshold of the optical resonator components and the small-signal gain, the scaling laws for designing high power CW CO2 lasers have been established. In transverse flow CO2 lasers having discharge of square cross-section, the discharge lengthL and its widthW for a specific laser powerP (Watt) and gas flow velocityV (cm/s) can be given byL = 1.4 x 104 p 1/2 V -1 cms andW = 0.04P 1/2 cms. The optimum transmitivity of the output coupler is found to be almost constant (about 60%), independent of the small signal gain and laser power. In fast axial flow CO2 lasers the gas flow should be divided into several discharge tubes to maintain the flow velocity within sonic limit. The discharge length in this type of laser does not depend explicitly on the laser power, instead it depends on the input power density in the discharge and the gas flow velocity. Various considerations for ensuring better laser beam quality are also discussed.  相似文献   

5.
The wavelength-temperature shift observed in pulsed TE CO2 lasers is discussed theoretically by means of Six-temperature model rate equations for tunable TE CO2 lasers. Numerical calculations of the temperature-wavelength shift in a pulsed TE CO2 laser with a simple plano-concave stable resonator, whether excited by conventional low-inductance fast-discharge scheme or by a long-pulse Pulser/sustainer discharge scheme, show that the laser output wavelengths are within the 10P branch as the ambient temperature varies from 228 to 338 K, but will change as the ambient temperature varies. The laser output wavelengths will move to the transition lines with longer wavelengths in the 10P branch as the ambient temperature increases and vice versa. The calculated results also illustrate that near the ambient temperature of 310 K, the laser is more likely to operate on multi-transition lines. Considering this wavelength-temperature shift, the chilling device adopted in high-power high repetition rate TE CO2 lasers is important in maintaining a stable laser output spectra as well as a stable laser output power. The numerical results also suggest that a frequency agile resonator is highly recommended if stable laser output spectra are required in TE CO2 lasers.  相似文献   

6.
It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.  相似文献   

7.
In a research of fast axial flow CO2 laser sustained by 150 kHz silent discharge, we found the optimized gas mixing ratio was CO2:N2:He=1:22:5 or the content of helium was only about 18%. This result upset the situation of common CO2 lasers in which the most important laser gas is helium. An explanation of our particular results and supporting experimental evidence are given.  相似文献   

8.
We present a new idea of marking based on spectral properties of CO2 laser radiation. The idea has been illustrated on RF excited waveguide CO2 lasers in different configurations: single channel, multi-waveguide and slab-waveguide ones. The pulse operation of the laser has been considered as well. The advantage of the presented diffraction marker is avoiding complicated and fallible mechanical elements. The only executive elements of the marker are a diffraction grating and a piezoceramic transducer. It has been shown that the slab-waveguide configuration of the RF excited CO2 laser equipped with an unstable resonator is the most promising configuration for application to the diffraction marker.  相似文献   

9.
Twenty FIR laser lines with wavelengths between 146 and 2000 m have been observed from deuterated formyl fluoride (DCOF) optically pumped with isotopic CO2 lasers. Tunable diode laser measurements on thev 4 band of DCOF were combined with earlier high precision spectroscopic data on thev 3 andv 4 bands, and enabled identification of the transitions responsible for 9 of the new FIR lines.  相似文献   

10.
Tunable, cw, far infrared (FIR) radiation has been generated by nonlinear mixing of radiation from two CO2 lasers in a metal-insulator-metal, (MIM) diode. The FIR difference-frequency power was radiated from the MIM diode antenna to a calibrated indium antimonide bolometer. Two-tenths of a microwatt of FIR power was generated by 250 mW from each of the CO2 lasers. Using the combination of lines from a waveguide CO2 laser, with its larger tuning range, with lines from CO2, N2O, and CO2 isotope lasers promises complete coverage of the entire far infrared band from 100 to 5000 GHz (3–200 cm–1) with stepwise-tunable cw radiation.Contribution of the National Bureau of Standards, not subject to copyright  相似文献   

11.
The properties of a high density plasma focus produced inside a ring target with an Nd laser have been investigated. Studies of the axial propagation of a CO2 laser beam through the plasma focus have shown that the device can be used either as a fast pulse clipper or as an optical isolator for high power infra-red lasers. Self-focussing, strong refraction and defocussing and non-classical absorption of the CO2 laser beam have all been observed.  相似文献   

12.
A new formula is obtained for estimating the output power of fast-flow CO2 lasers. It is shown that a higher specific output power of these CO2 lasers in comparison with sealed-off CO2 lasers is caused mainly by the higher saturation intensity of the former. It is concluded that the temperature of the laser active medium affects almost only the charge stability and that, under stable discharge conditions, the same output power can be obtained at different temperatures of the active medium.  相似文献   

13.
Multiple laser beams demonstrate many advantages as energy sources in diamond synthesis. In a reported amazingly-fast multiple laser coating technique, CO2 gas is claimed as the sole precursor or secondary precursor for forming a diamond or diamond-like carbon, which remains poorly understood. The absorption coefficient changes under the irradiation of multiple lasers are one of the keys to resolve the mysteries of multiple laser beam coating processes. This study investigates the optical absorption in CO2 gas at the CO2 laser wavelength. The resonance absorption process is modeled as an inverse process of the lasing transitions of CO2 lasers. The well-established CO2 vibrational-rotational energy structures are used as the basis for the calculations with the Boltzmann distribution for equilibrium states and the three-temperature model for non-equilibrium states. Based on the population distribution, our predictions of the CO2 absorption coefficient changes as a function of temperature are in agreement with the published data.  相似文献   

14.
Organic polymer (PES: PolyEther Sulphone and PEEK: PolyEther Ether Ketone) ablation with oscillation-line selected TEA CO2 lasers is successfully demonstrated. With different irradiation conditions the ablative etch-rate slopes were varied, which means that the ablation process is dependent on the ablation conditions such as incident laser intensity and ambient gas. In perforation processing of the PEEK film, the TEA CO2 laser had a higher etch rate of 42 m/pulse at a fluence of 70 J/cm2 in vacuum than the XeCl laser.  相似文献   

15.
Both standing waves in laser oscillators and spatially inhomogenous cross sections of laser beam and pumprate cause a non-uniform distribution of excited state molecules in longitudinal and transversal direction, respectively. This spatial hole burning however is smoothed by diffusion of the excited molecules. The effect of diffusion is investigated theoretically for an optically pumped far infrared laser as well as the corresponding CO2 pump laser. It is found, that the remaining spatial hole burning in the direction of wave propagation is negligible within CO2 lasers but not within FIR lasers. Concerning the transversal direction it can be shown that in the FIR laser diffusion takes no effect, whereas the transversal distribution of the excited molecules in the CO2 laser is significantly influenced by diffusion.FIR ring lasers avoid longitudinal spatial hole burning, which leads to the common assumption that they use the active medium more efficient than conventional standing wave lasers, hence delivering higher output powers. This expected advantage is levelled out to a great extent by diffusion.  相似文献   

16.
In the paper we have modelled plasma-chemical reactions in the CO2 low pressure, DC excited lasers. A good agreement of theoretical and experimental results has been achieved. It has been proved that neglect of reactions with electronic excited species or heterogeneous recombination leads to almost 50% overestimation of CO2 equilibrium conversion. The relation of CO2 equilibrium conversion to the reduced field E/N, pressure and current density depends on discharge conditions and mainly on the role played in discharge by ambipolar diffusion. This role decreases with an increase of the discharge diameter and of the mixture convection velocity. The CO2 equilibrium conversion increases with growth of E/N and j and with decrease of pressure for discharges in small, sealed-off laser systems. The CO2 equilibrium conversion is not always a monotone function of p in large, convection cooled lasers. It does not depend so much on E/N as the electron temperature alone if conversions in different mixtures are compared.  相似文献   

17.
The usual laser rate equations have been applied to fit energy and shape of pulsed emissions of RF CO2 single mode lasers starting from the discharge and cavity parameters. The model well reproduce the laser behaviour, if to fit the turn-off normally observed in these lasers we introduce a phase laser gain correction related to the frequency chirp.  相似文献   

18.
Near-infrared trace-gas sensors based on room-temperature diode lasers   总被引:3,自引:0,他引:3  
2 monitor designed for field applications using room-temperature diode lasers are presented. Near-infrared DFB lasers operating at 1.57 μm and around 2.0 μm have been used for CO2 measurements. At ambient concentration levels a resolution of more than two orders of magnitude has been demonstrated at 1.57 μm, at 2 μm the precision is in the order of 0.1 ppm CO2, and for trace analysis a detection limit of 10 ppb has been obtained. The measurements demonstrate the capability of near-infrared DFB diode lasers for the precise determination of CO2 concentrations as required for climatological, medical, or industrial applications. Received: 24 February 1998/Revised version: 27 April 1998  相似文献   

19.
A compacted size high power CO2 laser has been developed using an acousto-optically (AO) Q-switch. Performance characteristics have been investigated as a function of output mirror transmittance. The theory of six-temperature model for CO2 lasers has firstly been utilized to analyze the dynamical process in the AO Q-switched CO2 laser. This theory perfectly explains the behavior of energy transfer between different molecules in laser gain medium, and describes the shape of pulse laser. The calculated pulse waveforms are in good agreement with the experimental result. Both the experimental and theoretical results present that the optimal value of output mirror transmittance is 39%. Under this condition, the measured peak power is 4750 W and pulsed width is 160 ns, which is consistent with the calculations. Six-temperature model is a perfect theory for CO2 laser kinetics, which will lay a theoretical foundation for the laser optimum design.  相似文献   

20.
Nader Daneshfar  Ali Bahari 《Optik》2012,123(14):1297-1300
In this paper a theoretical analysis of single mode hybrid CO2 lasers is studied that to describe the process of the dynamic emission in this lasers types and based on the Landau – Teller six-temperature model for the CO2-N2-He-CO system. The main discharge region is considered as a time dependent nonlinear RLC circuit. The electric circuit equations (including the ionization rate equations), the equations of laser (including stored energy density in CO2 modes) and equations of laser intensities are coupled and solved numerically. Then the effects of the ionizer dielectric parameters on the output laser intensity are obtained. Application of this model gives more output energy than that have obtained by the previous works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号