首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Finsler geometry, minimal surfaces with respect to the Busemann-Hausdorff measure and the Holmes-Thompson measure are called BH-minimal and HT-minimal surfaces, respectively. In this paper, we give the explicit expressions of BH-minimal and HT-minimal rotational hypersurfaces generated by plane curves rotating around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski (α, β)-space (\mathbbVn+1,[(Fb)\tilde]){(\mathbb{V}^{n+1},\tilde{F_b})} , where \mathbbVn+1{\mathbb{V}^{n+1}} is an (n+1)-dimensional real vector space, [(Fb)\tilde]=[(a)\tilde]f([(b)\tilde]/[(a)\tilde]), [(a)\tilde]{\tilde{F_b}=\tilde{\alpha}\phi(\tilde{\beta}/\tilde{\alpha}), \tilde{\alpha}} is the Euclidean metric, [(b)\tilde]{\tilde{\beta}} is a one form of constant length b:=||[(b)\tilde]||[(a)\tilde], [(b)\tilde]\sharp{b:=\|\tilde{\beta}\|_{\tilde{\alpha}}, \tilde{\beta}^{\sharp}} is the dual vector of [(b)\tilde]{\tilde{\beta}} with respect to [(a)\tilde]{\tilde{\alpha}} . As an application, we first give the explicit expressions of the forward complete BH-minimal rotational surfaces generated around the axis in the direction of [(b)\tilde]\sharp{\tilde{\beta}^{\sharp}} in Minkowski Randers 3-space (\mathbbV3,[(a)\tilde]+[(b)\tilde]){(\mathbb{V}^{3},\tilde{\alpha}+\tilde{\beta})} .  相似文献   

2.
We study the asymptotic behaviour of the trajectories of the second order equation ${\ddot{x}(t)+\gamma \dot{x}(t)+\nabla\phi(x(t))+\varepsilon(t)x(t)=g(t)}We study the asymptotic behaviour of the trajectories of the second order equation [(x)\ddot](t)+g[(x)\dot](t)+?f(x(t))+e(t)x(t)=g(t){\ddot{x}(t)+\gamma \dot{x}(t)+\nabla\phi(x(t))+\varepsilon(t)x(t)=g(t)} , where γ > 0, g ? L1([0,+¥[;H){g \in L^1([0,+\infty[;H)}, Φ is a C 2 convex function and e{\varepsilon} is a positive nonincreasing function.  相似文献   

3.
A Toeplitz operator TfT_\phi with symbol f\phi in L(\mathbbD)L^{\infty}({\mathbb{D}}) on the Bergman space A2(\mathbbD)A^{2}({\mathbb{D}}), where \mathbbD\mathbb{D} denotes the open unit disc, is radial if f(z) = f(|z|)\phi(z) = \phi(|z|) a.e. on \mathbbD\mathbb{D}. In this paper, we consider the numerical ranges of such operators. It is shown that all finite line segments, convex hulls of analytic images of \mathbbD\mathbb{D} and closed convex polygonal regions in the plane are the numerical ranges of radial Toeplitz operators. On the other hand, Toeplitz operators TfT_\phi with f\phi harmonic on \mathbbD\mathbb{D} and continuous on [`(\mathbbD)]{\overline{\mathbb{D}}} and radial Toeplitz operators are convexoid, but certain compact quasinilpotent Toeplitz operators are not.  相似文献   

4.
Let Co(α) denote the class of concave univalent functions in the unit disk \mathbbD{\mathbb{D}}. Each function f ? Co(a){f\in Co(\alpha)} maps the unit disk \mathbbD{\mathbb{D}} onto the complement of an unbounded convex set. In this paper we find the exact disk of variability for the functional (1-|z|2)( f¢¢(z)/f(z)), f ? Co(a){(1-|z|^2)\left ( f^{\prime\prime}(z)/f^{\prime}(z)\right), f\in Co(\alpha)}. In particular, this gives sharp upper and lower estimates for the pre-Schwarzian norm of concave univalent functions. Next we obtain the set of variability of the functional (1-|z|2)(f¢¢(z)/f(z)), f ? Co(a){(1-|z|^2)\left(f^{\prime\prime}(z)/f^{\prime}(z)\right), f\in Co(\alpha)} whenever f′′(0) is fixed. We also give a characterization for concave functions in terms of Hadamard convolution. In addition to sharp coefficient inequalities, we prove that functions in Co(α) belong to the H p space for p < 1/α.  相似文献   

5.
Let B denote the unit ball in [(?)\tilde] \widetilde{\nabla\hskip-4pt}\hskip4pt denote the volume measure and gradient with respect to the Bergman metric on B. In the paper we consider the weighted Dirichlet spaces Dg{{\cal D}_{\gamma}} , $\gamma > (n-1)$\gamma > (n-1) , and weighted Bergman spaces Apa{A^p_{\alpha}} , 0 < p < ¥0 < p < \infty , $\alpha > n$\alpha > n , of holomorphic functions f on B for which Dgf)D_{\gamma}(\,f) and || f||Apa\Vert\, f\Vert_{A^p_{\alpha}} respectively are finite, where Dgf)=òB (1-|z|2)g|[(?)\tilde]  f(z)|2dt(z),D_{\gamma}(\,f)=\int_B (1-\vert z\vert^2)^{\gamma}\vert\widetilde{\nabla\hskip-4pt}\hskip4pt f(z)\vert^2d\tau(z), and || f||pApaB(1-|z|2)af(z)|pdt(z).\Vert\, f\Vert^p_{A^p_{\alpha}}=\int_B(1-\vert z\vert^2)^{\alpha}\vert\, f(z)\vert^pd\tau(z). The main result of the paper is the following theorem.Theorem 1. Let f be holomorphic on B and $\alpha > n$\alpha > n .  相似文献   

6.
For ${\alpha\in\mathbb C{\setminus}\{0\}}For a ? \mathbb C\{0}{\alpha\in\mathbb C{\setminus}\{0\}} let E(a){\mathcal{E}(\alpha)} denote the class of all univalent functions f in the unit disk \mathbbD{\mathbb{D}} and is given by f(z)=z+a2z2+a3z3+?{f(z)=z+a_2z^2+a_3z^3+\cdots}, satisfying
${\rm Re}\left (1+ \frac{zf'(z)}{f'(z)}+\alpha zf'(z)\right ) > 0 \quad {\rm in }\,{\mathbb D}.${\rm Re}\left (1+ \frac{zf'(z)}{f'(z)}+\alpha zf'(z)\right ) > 0 \quad {\rm in }\,{\mathbb D}.  相似文献   

7.
We consider the weighted Bergman spaces HL2(\mathbb Bd, ml){\mathcal {H}L^{2}(\mathbb {B}^{d}, \mu_{\lambda})}, where we set dml(z) = cl(1-|z|2)l dt(z){d\mu_{\lambda}(z) = c_{\lambda}(1-|z|^2)^{\lambda} d\tau(z)}, with τ being the hyperbolic volume measure. These spaces are nonzero if and only if λ > d. For 0 < λ ≤ d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. Specifically, we describe classes of symbols for which the corresponding Toeplitz operators can be defined as bounded operators or as a Hilbert–Schmidt operators on the generalized Bergman spaces.  相似文献   

8.
Let A denote the class of analytic functions f, in the open unit disk E = {z : |z| < 1}, normalized by f(0) = f′(0) − 1 = 0. In this paper, we introduce and study the class STn,al,m(h){ST^{n,\alpha}_{\lambda,m}(h)} of functions f ? A{f\in A}, with \fracDn,al fm(z)z 1 0{\frac{D^{n,\alpha}_\lambda f_m(z)}{z}\neq 0}, satisfying
\fracz(Dn,al f(z))¢Dn,al fm(z)\prec h(z),    z ? E,\frac{z\left(D^{n,\alpha}_\lambda f(z)\right)'}{D^{n,\alpha}_\lambda f_m(z)}\prec h(z),\quad z\in E,  相似文献   

9.
This paper is concerned mainly with the logarithmic Bloch space ℬlog  which consists of those functions f which are analytic in the unit disc \mathbbD{\mathbb{D}} and satisfy sup|z| < 1(1-|z|)log\frac11-|z||f(z)| < ¥\sup_{\vert z\vert <1}(1-\vert z\vert )\log\frac{1}{1-\vert z\vert}\vert f^{\prime}(z)\vert <\infty , and the analytic Besov spaces B p , 1≤p<∞. They are all subspaces of the space VMOA. We study the relation between these spaces, paying special attention to the membership of univalent functions in them. We give explicit examples of:
•  A bounded univalent function in $\bigcup_{p>1}B^{p}$\bigcup_{p>1}B^{p} but not in the logarithmic Bloch space.  相似文献   

10.
Let X be a complex Banach space and let B(X){\mathcal{B}(X)} be the space of all bounded linear operators on X. For x ? X{x \in X} and T ? B(X){T \in \mathcal{B}(X)}, let rT(x) = limsupn ? ¥ || Tnx|| 1/n{r_{T}(x) =\limsup_{n \rightarrow \infty} \| T^{n}x\| ^{1/n}} denote the local spectral radius of T at x. We prove that if j: B(X) ? B(X){\varphi : \mathcal{B}(X) \rightarrow \mathcal{B}(X)} is linear and surjective such that for every x ? X{x \in X} we have r T (x) = 0 if and only if rj(T)(x) = 0{r_{\varphi(T)}(x) = 0}, there exists then a nonzero complex number c such that j(T) = cT{\varphi(T) = cT} for all T ? B(X){T \in \mathcal{B}(X) }. We also prove that if Y is a complex Banach space and j:B(X) ? B(Y){\varphi :\mathcal{B}(X) \rightarrow \mathcal{B}(Y)} is linear and invertible for which there exists B ? B(Y, X){B \in \mathcal{B}(Y, X)} such that for y ? Y{y \in Y} we have r T (By) = 0 if and only if rj( T) (y)=0{ r_{\varphi ( T) }(y)=0}, then B is invertible and there exists a nonzero complex number c such that j(T) = cB-1TB{\varphi(T) =cB^{-1}TB} for all T ? B(X){T \in \mathcal{B}(X)}.  相似文献   

11.
The perturbation classes problem for semi-Fredholm operators asks when the equalities SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)} and SC(X,Y)=PF-(X,Y){\mathcal{SC}(X,Y)=P\Phi_-(X,Y)} are satisfied, where SS{\mathcal{SS}} and SC{\mathcal{SC}} denote the strictly singular and the strictly cosingular operators, and PΦ+ and PΦ denote the perturbation classes for upper semi-Fredholm and lower semi-Fredholm operators. We show that, when Y is a reflexive Banach space, SS(Y*,X*)=PF+(Y*,X*){\mathcal{SS}(Y^*,X^*)=P\Phi_+(Y^*,X^*)} if and only if SC(X,Y)=PF-(X,Y),{\mathcal{SC}(X,Y)=P\Phi_-(X,Y),} and SC(Y*,X*)=PF-(Y*,X*){\mathcal{SC}(Y^*,X^*)=P\Phi_-(Y^*,X^*)} if and only if SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)}. Moreover we give examples showing that both direct implications fail in general.  相似文献   

12.
A selection theorem concerning support points of convex sets in a Banach space is proved. As a corollary we obtain the following result. Denote by ${\mathcal{BCC}(X)}A selection theorem concerning support points of convex sets in a Banach space is proved. As a corollary we obtain the following result. Denote by BCC(X){\mathcal{BCC}(X)} the metric space of all nonempty bounded closed convex sets in a Banach space X. Then there exists a continuous mapping S : BCC(X) ? X{S : \mathcal{BCC}(X) \rightarrow X} such that S(K) is a support point of K for each K ? BCC(X){K \in \mathcal{BCC}(X)}. Moreover, it is possible to prescribe the values of S on a closed discrete subset of BCC(X){\mathcal{BCC}(X)}.  相似文献   

13.
Summary. Local solutions of the functional equation¶¶zk f( z) = ?k=1nGk( z) f( skz ) +g( z) z{^\kappa} \phi \left( z\right) =\sum_{k=1}^nG_k\left( z\right) \phi \left( s_kz \right) +g\left( z\right) ¶with k > 0 \kappa > 0 and | sk| \gt 1 \left| s_k\right| \gt 1 are considered. We prove that the equation is solvable if and only if a certain system of k \kappa conditions on Gk (k = 1, 2, ... , n) and g is fulfilled.  相似文献   

14.
Suppose that f1, ?, fmf_1, \ldots , f_m satisfy functional equations of type¶¶ fi(zd) = Pi(z, fi(z))     or     fi(z) = Pi(z, fi(zd))f_i({z^d}) = P_i(z, f_i(z)) \quad {or} \quad f_i(z) = P_i(z, f_i({z^d})) ¶for i = 1, ?, mi = 1, \ldots , m, an integer d > 1 and polynomials Pi ? \Bbb C (z)[ y]P_i \in \Bbb C (z)[ {y}] with pairwise distinct partial degrees degy( P1), ?, degy( Pm)\deg _y( {P_1}), \ldots , \deg _y( {P_m}). Generalizing a result of Keiji Nishioka and using an idea of Kumiko Nishioka we show, that f1, ?, fmf_1, \ldots , f_m can only be algebraically dependent over \Bbb C (z)\Bbb C (z), if there is an index k ? { 1, ?, m}\kappa \in \{ {1, \ldots , m}\} such that fkf_{\kappa } is rational.  相似文献   

15.
Let ϕ be a function in the Wiener amalgam space W(L1)\emph{W}_{\infty}(L_1) with a non-vanishing property in a neighborhood of the origin for its Fourier transform [^(f)]\widehat{\phi}, t={tn}n ? \mathbb Z{\bf \tau}=\{\tau_n\}_{n\in {{\mathbb Z}}} be a sampling set on ℝ and VftV_\phi^{\bf \tau} be a closed subspace of L2(\mathbbR)L_2(\hbox{\ensuremath{\mathbb{R}}}) containing all linear combinations of τ-translates of ϕ. In this paper we prove that every function f ? Vftf\in V_\phi^{\bf \tau} is uniquely determined by and stably reconstructed from the sample set Lft(f)={ò\mathbbR f(t)[`(f(t-tn))] dt}n ? \mathbb ZL_\phi^{\bf \tau}(f)=\Big\{\int_{\hbox{\ensuremath{\mathbb{R}}}} f(t) \overline{\phi(t-\tau_n)} dt\Big\}_{n\in {{\mathbb Z}}}. As our reconstruction formula involves evaluating the inverse of an infinite matrix we consider a partial reconstruction formula suitable for numerical implementation. Under an additional assumption on the decay rate of ϕ we provide an estimate to the corresponding error.  相似文献   

16.
This paper treats the rich mathematical structure of the (dimensionless) equation of motion governing the behavior of an elastically restrained simple pendulum subject to a downward force of magnitude f(t) applied to its bob with $\dot{f}(t)>0$\dot{f}(t)>0 for all t>0 and f(t)→∞ as t→∞:
[(q)\ddot]+2n[(q)\dot] +q = f(t)sinq.\ddot{\theta}+2\nu\dot{\theta} +\theta= f(t)\sin\theta.  相似文献   

17.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

18.
In this paper we obtain a new regularity criterion for weak solutions to the 3D MHD equations. It is proved that if div( \fracu|u|) \mathrm{div}( \frac{u}{|u|}) belongs to L\frac21-r( 0,T;[(X)\dot]r( \mathbbR3) ) L^{\frac{2}{1-r}}( 0,T;\dot{X}_{r}( \mathbb{R}^{3}) ) with 0≤r≤1, then the weak solution actually is regular and unique.  相似文献   

19.
Summary. Let \Bbb K {\Bbb K} be either the field of reals or the field of complex numbers, X be an F-space (i.e. a Fréchet space) over \Bbb K {\Bbb K} n be a positive integer, and f : X ? \Bbb K f : X \to {\Bbb K} be a solution of the functional equation¶¶f(x + f(x)n y) = f(x) f(y) f(x + f(x)^n y) = f(x) f(y) .¶We prove that, if there is a real positive a such that the set { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} contains a subset of second category and with the Baire property, then f is continuous or { x ? X : |f(x)| ? (0, a)} \{ x \in X : |f(x)| \in (0, a)\} for every x ? X x \in X . As a consequence of this we obtain the following fact: Every Baire measurable solution f : X ? \Bbb K f : X \to {\Bbb K} of the equation is continuous or equal zero almost everywhere (i.e., there is a first category set A ì X A \subset X with f(X \A) = { 0 }) f(X \backslash A) = \{ 0 \}) .  相似文献   

20.
Let f be an isometric embedding of the dual polar space ${\Delta = DQ(2n, {\mathbb K})}Let f be an isometric embedding of the dual polar space D = DQ(2n, \mathbb K){\Delta = DQ(2n, {\mathbb K})} into D¢ = DQ(2n, \mathbb K¢){\Delta^\prime = DQ(2n, {\mathbb K}^\prime)}. Let P denote the point-set of Δ and let e¢: D¢? S¢ @ PG(2n - 1, \mathbb K¢){e^\prime : \Delta^\prime \rightarrow {\Sigma^\prime} \cong {\rm PG}(2^n - 1, {{\mathbb K}^\prime})} denote the spin-embedding of Δ′. We show that for every locally singular hyperplane H of Δ, there exists a unique locally singular hyperplane H′ of Δ′ such that f(H) = f(P) ?H¢{f(H) = f(P) \cap H^\prime}. We use this to show that there exists a subgeometry S @ PG(2n - 1, \mathbb K){\Sigma \cong {\rm PG}(2^n - 1, {\mathbb K})} of Σ′ such that: (i) e¢°f (x) ? S{e^\prime \circ f (x) \in \Sigma} for every point x of D; (ii) e : = e¢°f{\Delta; ({\rm ii})\,e := e^\prime \circ f} defines a full embedding of Δ into Σ, which is isomorphic to the spin-embedding of Δ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号