首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the mean field method to study the dynamics of thermal entanglement and also the measurementinduced disturbance for a mixed qutrit-qubit system coupled to an environment, comprised of an Ising spin-chain with long range interactions, embedded in a transverse magnetic field. It is revealed that both quantities die down in long enough time and the fade out time is a decreasing function of temperature; however, the environmental magnetic field holds back the decoherence, and increases the fade out time; thus, providing a means to control and postpone the decoherence process. Moreover, it is observed that the discrepancy between the interaction strength of the qubit and the qutrit with the environment, substantially affects the decoherence behavior of the system.  相似文献   

2.
We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magnetomechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magnetomechanical noise.  相似文献   

3.
In the present work, the entropy and internal energy of a GaAs cylindrical quantum dot in the presence of an applied magnetic field is studied. For this purpose, the Tsallis formalism is applied to obtain internal energy and entropy. It is found that entropy and internal energy are continuous function and they are zero at special temperatures. Entropy maximum increases with increasing dot radius. Internal energy increases by increasing magnetic field.  相似文献   

4.
曹江伟  王锐  王颖  白建民  魏福林 《物理学报》2016,65(5):57501-057501
基于隧穿磁电阻效应(TMR)的磁场传感器具有很高的磁场灵敏度, 但同时噪声也较大,有效抑制TMR磁场传感器的噪声, 尤其是低频噪声的抑制对于其在高灵敏度要求场合的应用具有重要的意义. 本文采用高精度数据采集卡搭建了噪声测量系统, 测量了全桥结构TMR磁场传感器的噪声频谱图, 发现TMR传感器的噪声在低频段表现为1/f特性, 同时噪声功率谱密度与工作电流平方成正比关系; 低频噪声在自由层翻转区间内噪声急剧增大, 证明了1/f噪声主要来源于磁噪声, 这一结果为TMR磁场传感器的噪声特性优化指明了方向.  相似文献   

5.
We investigate the quark matter in a strong magnetic field in the framework of SU(2) NJL model with a magnetic-field-dependent coupling. The spin polarization, the entropy per baryon, and the energy are studied by analyzing the competition of the magnetic effect and the thermal effect. The stronger magnetic field can enhance the spin polarization, arrange quarks in a uniform spin orientation, and change the energy per baryon drastically. However,it can hardly affect the entropy per baryon, which is dominated by the temperature. As the temperature increases, more quarks will be excited from the lowest Landau level up to higher Landau levels.  相似文献   

6.
Dynamics of a coupled two-spin system in a static magnetic field are investigated. An analysis is presented of resonance transitions driven by a circularly polarized radio-frequency (RF) field orthogonal to the static field. When the RF field amplitude is modulated at a certain frequency depending on the field strength, the system exhibits parametric resonance behavior. The periodicity of transitions breaks down, and the Shannon entropy of the recurrence probability density for the system’s states increases by more than an order of magnitude.  相似文献   

7.
The thermodynamic properties of two electrons in two dimensional parabolic GaAs quantum dot are studied where both the magnetic field and the e–e interaction are fully considered. The e–e interaction has been treated by a model potential which makes the Hamiltonian exactly solvable. The energy spectrum is used to calculate the canonical partition function, and then we obtain the thermodynamic properties; mean energy, heat capacity and entropy as a function of temperature (T) and magnetic field (B).A steep transition from zero to 4kB is observed in the heat capacity as a function of temperature for small values of magnetic field and saturates within a small temperature range, also the heat capacity has a peak-like structure at low temperature, while for high magnetic field heat capacity develops a shoulder at 2kB then it approaches the saturation value with further increase in temperature. The entropy increases with increasing temperature, but at higher temperature, it remains almost independent of the magnetic field. It is shown that, at low magnetic field values, the effect of magnetic field on heat capacity is tangible and it attains a constant value with further increase in magnetic field. Entropy is almost linearly proportional with increasing magnetic field strength.  相似文献   

8.

The quasi-exact properties of an exciton are investigated theoretically in the presence of an external magnetic field using the effective-mass approach in GaAs parabolic quantum dot. The energy spectrum is obtained analytically as a function of the dot radius, interaction strength and magnetic field. It is established that, a steady bound state of an exciton in the ground state exists under the effect of a strong magnetic field; also I noticed that the exciton binding energy decreases by increasing both the radius of the dot and the magnetic field strength and the reduction becomes pronounced for larger dots. As expected, it has been found that the exciton total energy decreases with increasing the size of the dot and it enhances by increasing the magnetic field. It appears that the exciton total energy strongly depends on the magnetic field for dots with big size. The magnetic field effect on the exciton size also has been studied. It is shown that the increase in the magnetic field leads to a reduction in the exciton size; due to magnetic field confinement, while the size of an exciton reach its bulk limit as the dot size increases. Moreover, it is shown that, if the dot radius is sufficiently large the oscillator strength saturates and it becomes insensitive to the magnetic field while the increase in the magnetic field gradually weakened the oscillator strength. I have calculated the ground-state distribution for both the electron and the hole. It is found that the localization of the electron/hole increases in the presence of a magnetic field. Moreover, the ground-state optical-absorption intensity is investigated. Finally, the dependence of the lowest five states of an exciton on both the dot radius and the magnetic field are discussed.

  相似文献   

9.
郭培荣  徐伟  刘迪 《物理学报》2009,58(8):5179-5185
研究了一类受非高斯噪声驱动的双奇异随机系统,应用路径积分法和变换的方法得到了该系统对应的Fokker-Plank方程,并结合Shannon信息熵的定义给出了此类系统的熵流与熵产生随时间演化的表达式,分析了非平衡约束下所引入的系统耗散参数、奇异性强度参数、噪声相关时间和噪声偏离参数对熵流与熵产生的影响. 关键词: 信息熵 熵流与熵产生 非高斯噪声 双奇异随机系统  相似文献   

10.
<正>This paper deals with the time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise.The dimension of the Fokker-Planck equation is reduced by the linear transformation. The exact expression of the time dependence of information entropy is obtained based on the definition of Shannon’s information entropy.The relationships between the properties of dissipative parameters,system singularity strength parameter,quasimonochromatic noise,and their effects on information entropy are discussed.  相似文献   

11.
Jia-Ying Yang 《中国物理 B》2022,31(6):60504-060504
Based on the mean-field theory, we investigate the thermodynamic properties of the two-dimensional (2D) charged spin-1/2 Fermi gas. Landé factor g is introduced to measure the strength of the paramagnetic effect. There is a competition between diamagnetism and paramagnetism in the system. The larger the Landé factor, the smaller the entropy and specific heat. Diamagnetism tends to increase the entropy, while paramagnetism leads to the decrease of the entropy. We find that there exists a critical value of Landé factor for the transition point due to the competition. The entropy of the system increases with the magnetic field when g < 0.58. With the growth of paramagnetism, when g > 0.58, the entropy first decreases with the magnetic field, then reaches a minimum value, and finally increases again. Both the entropy and specific heat increase with the temperature, and no phase transition occurs. The specific heat tends to a constant value at the hightemperature limit, and it approaches to zero at very low temperatures, which have been proved by the analytical calculation.  相似文献   

12.
It is shown that for a resonant magnetic field, the two cyclotron masses (m+* and m-*) in a parabolic quantum dot are split into two cyclotron masses, respectively. The cyclotron mass (m+*) decreases with decreasing the size of the quantum dot, the stronger the magnetic field strength, the larger the cyclotron mass. The lower branch of the cyclotron mass (m-*) increases linearly with increasing the magnetic field strength. The upper branch of the cyclotron mass (m-*) is larger than the bare band mass and enhances as the magnetic field strength increases.  相似文献   

13.
研究了两量子比特的海森堡XXX自旋链分别处于x方向和y方向均匀外磁场时系统的纠缠特性,并用负度N来度量。得到纠缠度N的解析表达式,并在此基础上进行数值计算。仔细讨论了磁场B、温度T和自旋耦合系数J对纠缠度N的影响。结果表明:纠缠度N会随着磁场|B|和温度T的增大而减小,但会随着自旋耦合系数J的增大而增大。另外,增大的J还会使临界磁场|Bc|和临界温度Tth变大。所以,我们可以通过调节B、T和J来控制热纠缠,这对固态系统中通过构建和选择参数调整系统的纠缠度具有一定的作用和意义。研究还发现,加在x方向均匀外磁场和加在y方向均匀外磁场对两量子比特的海森堡XXX自旋链的作用效果是一样的。  相似文献   

14.
We study the dynamics of the entropy correlations and entanglement in a system of interaction of a superconducting charge qubit with a single-mode resonant cavity subject to noise considered as two-state random phase telegraph noise. We show that although the noise has an apparent suppressing effect on the evolution of the entropies of the qubit and the field and also on the entanglement in the system, the entropy exchange between the qubit and the
field is independent of it during the time evolution of the system.  相似文献   

15.
Effects of thermal activation are included in micromagnetic simulations by adding a random thermal field to the effective magnetic field. As a result, the Landau–Lifshitz equation is converted into a stochastic differential equation of Langevin type with multiplicative noise. The Stratonovich interpretation of the stochastic Landau–Lifshitz equation leads to the correct thermal equilibrium properties. The proper generalization of Taylor expansions to stochastic calculus gives suitable time integration schemes. For a single rigid magnetic moment the thermal equilibrium properties are investigated. It is found, that the Heun scheme is a good compromise between numerical stability and computational complexity. Small cubic and spherical ferromagnetic particles are studied.  相似文献   

16.
This paper considers the effect of the magnetic field on the specific heat, entropy, and temperature behavior of the magnetization in a two-sublattice ferrite in the collinear phase. It is shown that the specific heat and entropy vary nonmonotonically with the magnetic field, while at low temperatures the magnetization increases with the temperature when the magnetic field takes values in the range H1/2 < H h1, where H1 is the value of the magnetic field for which deviation from the collinear structure begins [1, 2].Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 33–36, January, 1977.In conclusion, the author wishes to express his indebtedness to G. M. Nedlin and to thank him for his valuable appraisal of the work.  相似文献   

17.
In order to reduce the resistance of tunnel magnetoresistive (TMR) read heads, a large stripe height sensor structure was proposed. The thermal magnetic noise, called as mag-noise, in this type of TMR heads was simulated by micromagnetic modeling using the Landau–Lifshitz–Gilbert (LLG) gyro-magnetic equation. It is found that for the same hard bias strength, both the sensitivity and the mag-noise of TMR heads increase as the sensor height increases. The signal-to-noise ratio (SNR) is reduced at large stripe height. The large increase in the demagnetization field resulting from the stripe height increase causes the weakening of the effective bias field, thus increasing the mag-noise significantly. Low mag-noise and high SNR can be obtained by increasing the hard bias strength and reducing the spacer between the hard bias and the free layer. An extended hard bias structure has been proposed to further increase SNR of TMR heads.  相似文献   

18.
We investigate the effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system by applying the concept of negativity. It is found that the nonlinear couplings favor the thermal entanglement creating. Only when the nonlinear couplings ∣K∣ are larger than a certain critical value does the entanglement exist. The dependence of the thermal entanglement in this system on the magnetic field and temperature is also presented. The critical magnetic field increases with the increasing nonlinear couplings constant ∣K∣. And for a fixed nonlinear couplings constant, the critical temperature is independent of the magnetic field B.  相似文献   

19.
We have studied work fluctuation behaviour in the presence of internal thermal noise as well as external coloured noise. The external coloured noise may have both Gaussian or non-Gaussian characteristics. We have investigated the dependence of position and work fluctuations on the properties of both the environments. For thermal noise driven systems, there is a maximum in the variation of mean square fluctuation of work (MSFW) as a function of damping strength at intermediate times, while at asymptotic long times MSFW monotonically increases in the same damping regime. But for external noise, MSFW monotonically decreases as a function of damping strength at intermediate times, whereas at long times it becomes almost independent of damping strength.Another interesting observation is that for the external noise driven systems, noise correlation time and damping strength have similar roles in the dynamics.  相似文献   

20.
唐田田  王德华  黄凯云  王姗姗 《物理学报》2012,61(6):63202-063202
利用闭合轨道理论, 研究了变化的磁场和不同电介质表面对氢负离子光剥离截面的影响, 并推导出了该体系下的光剥离截面公式. 结果发现, 氢负离子的光剥离截面不仅与磁场的强度有关, 而且还与电介质常数有关. 当氢负离子到电介质表面的距离和电介质常数一定时, 体系的光剥离截面中的振荡随磁场的变化而明显变化. 随着磁场强度的 增大, 体系的闭合轨道数目增多, 光剥离截面的振荡越来越复杂. 当氢负离子到电介质表面的距离和磁场强度一定时, 电介质常数的变化对光剥离截面的影响也很重要, 随着电介质常数的增大, 体系的闭合轨道数目增多, 光剥离截面的振荡也变得越来越复杂. 因此, 可以通过改变磁场强度和电解质常数来调整负离子的光剥离截面. 此结果 对于研究负离子体系在表面附近和外场中的光剥离问题具有一定的参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号