首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10?3 S cm?1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from ?2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.  相似文献   

2.
A proton-conducting nanocomposite gel polymer electrolyte (GPE) system, [35{(25 poly(methylmethacrylate) (PMMA) + 75 poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP))?+?xSiO2}?+?65{1 M NH4SCN in ethylene carbonate (EC) + propylene carbonate (PC)}], where x?=?0, 1, 2, 4, 6, 8, 10, and 12, has been reported. The free standing films of the gel electrolyte are obtained by solution cast technique. Films exhibit an amorphous and porous structure as observed from X-ray diffractometry (XRD) and scanning electron microscopy (SEM) studies. Fourier transform infrared spectrophotometry (FTIR) studies indicate ion–filler–polymer interactions in the nanocomposite blend GPE. The room temperature ionic conductivity of the gel electrolyte has been measured with different silica concentrations. The maximum ionic conductivity at room temperature has been observed as 4.3?×?10?3?S?cm?1 with 2 wt.% of SiO2 dispersion. The temperature dependence of ionic conductivity shows a typical Vogel-Tamman-Fulcher (VTF) behavior. The electrochemical potential window of the nanocomposite GPE film has been observed between ?1.6 V and 1.6 V. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO4·7H2O anode and PbO2/V2O5 cathode. The open circuit voltage (OCV) of the battery has been obtained as 1.55 V. The highest energy density of the cell has been obtained as 6.11 Wh?kg?1 for low current drain. The battery shows rechargeability up to 3 cycles and thereafter, its discharge capacity fades away substantially.  相似文献   

3.
Rice husk ash is a cheap raw material available in abundance in rice-growing countries. It contains around 85–90 % amorphous silica. Rice husk ash, when subjected to a simple chemical precipitation method, will produce nanosilica which can be used for many industrial and technological applications. In this work, we have successfully synthesized nano-sized silica from local rice husk ash and prepared the nanocomposite solid polymer electrolyte, PEO9LiTf:SiO2. The resulting electrolyte has been characterized by X-ray diffraction, differential scanning calorimetry, atomic force microscopy, Fourier transform infrared spectroscopy, and complex impedance spectroscopy. The electrolyte shows about a 12-fold increase in ionic conductivity at room temperature due to the silica filler. In the nanocomposite electrolyte, nanosilica particles obtained from rice husk ash behaved very similarly to the commercial grade nanosilica and had a size distribution in the 25- to 40-nm range. As already suggested by us and by others, the O2? and OH? surface groups in the filler surface interact with the Li+ ions and provide hopping sites for migrating Li+ ions through transient H bonding, creating additional high-conducting pathways. This would contribute to a substantial conductivity enhancement through increased ionic mobility. An additional contribution to conductivity enhancement, particularly at temperatures below 60 °C, appears to come from the increased fraction of the amorphous phase, as evidenced from the reduced crystallite melting temperature and the reduced enthalpy of melting due to the presence of the filler.  相似文献   

4.
Solid‐oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air as H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell with a solid–electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, with a lithium‐ion conductivity of σLi=4.8×10?4 S cm?1 at 25 °C that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+‐conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low‐impedance dendrite‐free plating/stripping of a lithium anode. It is also stable upon contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all‐solid‐state Li/LiFePO4 cell, a Li‐S cell with a polymer‐gel cathode, and a supercapacitor.  相似文献   

5.
A new plasticized nanocomposite polymer electrolyte based on poly (ethylene oxide) (PEO)-LiTf dispersed with ceramic filler (Al2O3) and plasticized with propylene carbonate (PC), ethylene carbonate (EC), and a mixture of EC and PC (EC+PC) have been studied for their ionic conductivity and thermal properties. The incorporation of plasticizers alone will yield polymer electrolytes with enhanced conductivity but with poor mechanical properties. However, mechanical properties can be improved by incorporating ceramic fillers to the plasticized system. Nanocomposite solid polymer electrolyte films (200–600 μm) were prepared by common solvent-casting method. In present work, we have shown the ionic conductivity can be substantially enhanced by using the combined effect of the plasticizers as well as the inert filler. It was revealed that the incorporating 15 wt.% Al2O3 filler in to PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity [σ RT (max)?=?7.8?×?10?6 S cm?1]. It was interesting to observe that the addition of PC, EC, and mixture of EC and PC to the PEO: LiTf: 15 wt.% Al2O3 CPE showed further conductivity enhancement. The conductivity enhancement with EC is higher than PC. However, mixture of plasticizer (EC+PC) showed maximum conductivity enhancement in the temperature range interest, giving the value [σ RT (max)?=?1.2?×?10?4 S cm?1]. It is suggested that the addition of PC, EC, or a mixture of EC and PC leads to a lowering of glass transition temperature and increasing the amorphous phase of PEO and the fraction of PEO-Li+ complex, corresponding to conductivity enhancement. Al2O3 filler would contribute to conductivity enhancement by transient hydrogen bonding of migrating ionic species with O–OH groups at the filler grain surface. The differential scanning calorimetry thermograms points towards the decrease of T g , crystallite melting temperature, and melting enthalpy of PEO: LiTf: Al2O3 CPE after introducing plasticizers. The reduction of crystallinity and the increase in the amorphous phase content of the electrolyte, caused by the filler, also contributes to the observed conductivity enhancement.  相似文献   

6.
In this work, a polymer/ceramic phase-separation porous membrane is first prepared from polyvinyl alcohol–polyacrylonitrile water emulsion mixed with fumed nano-SiO2 particles by the phase inversion method. This porous membrane is then wetted by a non-aqueous Li–salt liquid electrolyte to form the polymer/colloid dual-phase electrolyte membrane. Compared to the liquid electrolyte in conventional polyolefin separator, the obtained electrolyte membrane has superior properties in high ionic conductivity (1.9 mS?cm?1 at 30 °C), high Li+ transference number (0.41), high electrochemical stability (extended up to 5.0 V versus Li+/Li on stainless steel electrode), and good interfacial stability with lithium metal. The test cell of Li/LiCoO2 with the electrolyte membrane as separator also shows high-rate capability and excellent cycle performance. The polymer/colloid dual-phase electrolyte membrane shows promise for application in rechargeable lithium batteries.  相似文献   

7.
Polyvinyl formal (PVFM)‐based dense polymer membranes with nano‐Al2O3 doping are prepared via phase inversion method. The membranes and also their performances as gel polymer electrolytes (GPEs) for lithium ion battery are studied by field emission scanning electron microscope, X‐ray diffraction, differential scanning calorimetry, mechanical strength test, electrolyte uptake test, electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge test. The polymer membrane with 3 wt % nano‐Al2O3 doping shows the improved mechanical strength of 12.16 MPa and electrolyte uptake of 431.25% compared with 10.47 MPa and 310.59% of the undoped sample, respectively. The membrane absorbs and swells liquid electrolyte to form stable GPE with ionic conductivity of 4.92 × 10?4 S cm?1 at room temperature, which is higher than 1.77 × 10?4 S cm?1 of GPE from the undoped membrane. Moreover, the Al2O3‐modified membrane supporting GPE exhibits wide electrochemical stability window of 1.2–4.8 V (vs. Li/Li+) and good compatibility with LiFePO4 electrode, which implies Al2O3‐modified PVFM‐based GPE to be a promising candidate for lithium ion batteries. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 572–577  相似文献   

8.
Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~?5?×?106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40?×?10?4 S cm?1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4?+?20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g?1/142 mAh g?1 at 25 °C with 0.06 C-rate.  相似文献   

9.
Poly (acrylate-co-imide)-based gel polymer electrolytes are synthesized by in situ free radical polymerization. Infrared spectroscopy confirms the complete polymerization of gel polymer electrolytes. The ionic conductivity of gel polymer electrolytes are measured as a function of different repeating EO units of polyacrylates. An optimal ionic conductivity of the poly (PEGMEMA1100-BMI) gel polymer electrolyte is determined to be 4.8 × 10–3 S/cm at 25 °C. The lithium transference number is found to be 0.29. The cyclic voltammogram shows that the wide electrochemical stability window of the gel polymer electrolyte varies from −0.5 to 4.20 V (vs. Li/Li+). Furthermore, we found the transport properties of novel gel polymer electrolytes are dependent on the EO design and are also related to the rate capability and the cycling ability of lithium polymer batteries. The relationship between polymer electrolyte design, lithium transport properties and battery performance are investigated in this research.  相似文献   

10.
In the present work effect of 90 MeV O7+ ions with five different fluences on poly(ethylene oxide) (PEO)/Na+-montmorillonite (MMT) nanocomposites has been investigated. PEO/MMT nanocomposites were synthesized by solution intercalation technique. With the increase in irradiation fluence, gallery spacing of MMT increases in the composite and an exfoliated nanostructure is obtained at the fluence of 5?×?1012 ions/cm2 as revealed by X-ray diffraction results. Highest room temperature ionic conductivity of 4.2?×?10?6?S?cm?1 was found for the fluence 5?×?1012 ions/cm2, while the conductivity for unirradiated polymer electrolyte was found to be 7.5?×?10-8?S?cm?1. The increase in intercalation of PEO chains inside the galleries of MMT results in the increase in interaction between Na+ cation and oxygen heteroatom leading to the increase in ionic conductivity of the composites. Surface morphology and interactions among the various constituents in the nanocomposites at different fluence have been examined by scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The appearance of peak for each fluence in the loss tangent suggests the presence of relaxing dipoles in the polymer nanocomposite electrolyte films. With the increase in ion fluence the peak shifts towards higher frequency side, suggesting decrease in the relaxation time.  相似文献   

11.
One-dimension γ-LiV2O5 nanorods were synthesized using VO2(B) nanorods as precursor in this study. The as-prepared material is characterized by X-ray diffraction, X-ray photoelectron spectrometry, Fourier-transform infrared, transmission electron microscopy (TEM), cyclic voltammetry, and charge–discharge cycling test. TEM results show that LiV2O5 nanorods are 90–250 nm in diameter. The nanorods deliver a maximum discharge capacity of 284.3 mAh g?1 at 15 mA g?1 and 270.2 mAh g?1 is maintained at the 15th cycle. Good rate performance is also observed with the discharge capacity of 250.1 and 202.6 mAh g?1 at 50 and 300 mA g?1, respectively. The capacity retention at 300 mA g?1 is 84.2% over 50 cycles. The Li+ diffusion coefficient of LiV2O5 is calculated to be 10-10–10?9 cm2 s?1. It is demonstrated that the nanorod morphology could greatly facilitate to shorten lithium ion diffusion pathways and increase the contact area between active material and electrolyte, resulting in high capacity and rate performance for LiV2O5.  相似文献   

12.
Polymer based quasi-solid-state electrolyte (QSE) has attracted great attention due to its assurance for high safety of rechargeable batteries including lithium metal batteries (LMB). However, it faces the issue of low ionic conductivity of electrolyte and solid-electrolyte-interface (SEI) layer between QSE and lithium anode. Herein, we firstly demonstrate that the ordered and fast transport of lithium ion (Li+) can be realized in QSE. Due to the higher coordination strength of Li+ on tertiary amine (−NR3) group of polymer network than that on carbonyl (−C=O) group of ester solvent, Li+ can diffuse orderly and quickly on −NR3 of polymer, significantly increasing the ionic conductivity of QSE to 3.69 mS cm−1. Moreover, −NR3 of polymer can induce in situ and uniform generation of Li3N and LiNxOy in SEI. As a result, the Li||NCM811 batteries (50 μm Li foil) with this QSE show an excellent stability of 220 cycles at ≈1.5 mA cm−2, 5 times to those with conventional QSE. LMBs with LiFePO4 can stably run for ≈8300 h. This work demonstrates an attractive concept for improving ionic conductivity of QSE, and also provides an important step for developing advanced LMB with high cycle stability and safety.  相似文献   

13.
Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8×10–4 S cm–1 is obtained at 28 °C. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.  相似文献   

14.
Nanocrystalline cellulose (NCC)-reinforced poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) composite mats have been prepared by electrospinning method. Polymer electrolytes formed by activating the composite mats with 1 M lithium bis(trifluoromethanesulfonyl)imide/1-butyl-3-methypyrrolidinium bis(trifluoromethanesulfonyl)imide electrolyte solution. The addition of 2 wt% NCC in PVdF-HFP improved the electrolyte retention and storage modulus of the separator by 63 and 15 %, respectively. The developed electrolyte demonstrated high value of ionic conductivity viz. 4?×?10?4?S?cm?1 at 30 °C. Linear scan voltammetry revealed a wide electrochemical stability of the composite mat separator up to 5 V (vs. Li+/Li). Cyclic voltammetry of the polymer electrolyte with a graphite electrode in 2.5 to 0 V (vs. Li+/Li) potential range showed a reversible intercalation/de-intercalation of Li+ ions in the graphite. No peaks were observed related to the reduction of the electrolyte on the anode.  相似文献   

15.
Li+‐conducting oxides are considered better ceramic fillers than Li+‐insulating oxides for improving Li+ conductivity in composite polymer electrolytes owing to their ability to conduct Li+ through the ceramic oxide as well as across the oxide/polymer interface. Here we use two Li+‐insulating oxides (fluorite Gd0.1Ce0.9O1.95 and perovskite La0.8Sr0.2Ga0.8Mg0.2O2.55) with a high concentration of oxygen vacancies to demonstrate two oxide/poly(ethylene oxide) (PEO)‐based polymer composite electrolytes, each with a Li+ conductivity above 10?4 S cm?1 at 30 °C. Li solid‐state NMR results show an increase in Li+ ions (>10 %) occupying the more mobile A2 environment in the composite electrolytes. This increase in A2‐site occupancy originates from the strong interaction between the O2? of Li‐salt anion and the surface oxygen vacancies of each oxide and contributes to the more facile Li+ transport. All‐solid‐state Li‐metal cells with these composite electrolytes demonstrate a small interfacial resistance with good cycling performance at 35 °C.  相似文献   

16.
A novel hyperbranched poly(glycidol) (HPG) was prepared and characterized. The synthesized HPG was used as a substrate of a polymer electrolyte. The ionic conductivity of a blend of HPG, polyurethane (PU), and salt was studied. The ionic conductivity of HPG/PU/LiClO4 was about 6.6 × 10?6 S · cm?1 at 20 °C and 6.3 × 10?4 S · cm?1 at 60 °C. The results indicated that HPG showed higher solubility for salt than linear polyether when both had the same [O]/[Li+] molar ratio. The main reason was that more cavities and a lower degree of chain entanglement in HPG resulted in a lower glass‐transition temperature and were beneficial for decreasing the aggregation of salt or enhancing the ionic conductivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2225–2230, 2001  相似文献   

17.
To promote the development of solid‐state batteries, polymer‐, oxide‐, and sulfide‐based solid‐state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high‐temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10?3 S cm?1), good air stability, wide electrochemical window, excellent electrode interface stability, low‐cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3InCl6, that can be synthesized in water. Most importantly, the as‐synthesized Li3InCl6 shows a high ionic conductivity of 2.04×10?3 S cm?1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8Co0.1Mn0.1O2 cathode, the solid‐state Li battery shows good cycling stability.  相似文献   

18.

Performance of dye-sensitized nano-crystalline TiO2 thin film-based photo-electrochemical solar cells (PECSCs) containing gel polymer electrolytes is largely governed by the nature of the cation in the electrolyte. Dependence of the photovoltaic performance in these quasi-solid state PECSCs on the alkaline cation size has already been investigated for single cation iodide salt-based electrolytes. The present study reports the ionic conductivity dependence on the nature of alkaline cations (counterion) in a gel polymer electrolyte based on binary iodides. Polyacrylonitrile-based gel polymer electrolyte series containing binary iodide salts is prepared using one of the alkaline iodides (LiI, NaI, KI, RbI, and CsI) and tetrapropylammonium iodide (Pr4NI). All the electrolytes based on binary salts have shown conductivity enhancement compared to their single cation counterparts. When combined with Pr4NI, each of the Li+, Na+, K+, Rb+, and Cs+ cation containing iodide salts incorporated in the gel electrolytes has shown a room temperature conductivity enhancement of 85.59, 12.03, 12.71, 20.77, and 15.36%, respectively. The conductivities of gel electrolytes containing binary iodide systems with Pr4NI and KI/RbI/CsI are higher and have shown values of 3.28, 3.43, and 3.23 mS cm−1, respectively at room temperature. The influence of the nature of counterions on the performance of quasi-solid state dye-sensitized solar cells is investigated by assembling two series of cells. All the binary cationic solar cells have shown more or less enhancements of open circuit voltage, short circuit current density, fill factor, and efficiency compared to their single cation counterparts. This work highlights the importance of employing binary cations (a large and a small) in electrolytes intended for quasi-solid state solar cells. The percentage of energy conversion efficiency enhancement shown for the PECSCs made with electrolytes containing Pr4NI along with Li+, Na+, K+, Rb+, and Cs+ iodides is 260.27, 133.65, 65.27, 25.32, and 8.36%, respectively. The highest efficiency of 4.93% is shown by the solar cell containing KI and Pr4NI. However, the highest enhancements of ionic conductivity as well as the energy conversion efficiency were exhibited by the PECSC made with Li+-containing binary cationic electrolyte.

  相似文献   

19.
PVDF/PAN/SiO2 polymer electrolyte membranes based on non-woven fabrics were prepared via introducing a chemical reaction into Loeb-Sourirajan (L-S) phase inversion process. It was found that physical properties (porosity, electrolyte uptake and ionic conductivity) and electrochemical properties were obviously improved. A favorable membrane structure with fully connective porous and uniform pore size distribution was obtained. The effects of PVDF/PAN weight ratio on the morphology, crystallinity, porosity, and electrochemical performances of membranes were studied. The optimized PVDF/PAN (70/30 w/w) (designated as Mpc30) polymer electrolyte membrane delivered excellent electrolyte uptake of 246.8 % and the highest ionic conductivity of 3.32 × 10?3 S/cm with electrochemical stability up to 5.0 V (vs. Li/Li+). In terms of cell performance, the Li/Mpc30 polymer electrolyte/LiFePO4 battery exhibited satisfactory electrochemical properties including high discharge capacity of 149 mAh/g at 0.2 C rate and good discharge performance at different current densities. The promising results reported here clearly indicated that PVDF/PAN/SiO2 polymer electrolyte membranes prepared by the combination of phase inversion and chemical reaction method were promising enough to be applied in power lithium ion batteries.  相似文献   

20.
Organic-inorganic hybrid membranes based on poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride hexa fluoro propylene) [P(VdF-HFP)] 18.75 wt% were prepared by using various concentration of nanosized barium titanate (BaTiO3) filler. Structural characterizations were made by X-ray diffraction and Fourier transform infrared spectroscopy, which indicate the inclusion of BaTiO3 in to the polymer matrix. Addition of filler creates an effective route of polymer-filler interface and promotes the ionic conductivity of the membranes. From the ionic conductivity results, 6 wt% of BaTiO3-incorporated composite polymer electrolyte (CPE) showed the highest ionic conductivity (6 × 10?3 Scm?1 at room temperature). It is found that the filler content above 6 wt% rendered the membranes less conducting. Morphological images reveal that the ceramic filler was embedded over the membrane. Thermogravimetric and differential thermal analysis (TG-DTA) of the CPE sample with 6 wt% of the BaTiO3 shows high thermal stability. Electrochemical performance of the composite polymer electrolyte was studied in LiFePO4/CPE/Li coin cell. Charge-discharge cycle has been performed for the film exhibiting higher conductivity. These properties of the nanocomposite electrolyte are suitable for Li-batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号