首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibbs sampling also known as Glauber dynamics is a popular technique for sampling high dimensional distributions defined on graphs. Of special interest is the behavior of Gibbs sampling on the Erd?s‐Rényi random graph G(n,d/n), where each edge is chosen independently with probability d/n and d is fixed. While the average degree in G(n,d/n) is d(1 ‐ o(1)), it contains many nodes of degree of order log n/log log n. The existence of nodes of almost logarithmic degrees implies that for many natural distributions defined on G(n,p) such as uniform coloring (with a constant number of colors) or the Ising model at any fixed inverse temperature β, the mixing time of Gibbs sampling is at least n1+Ω(1/log log n). Recall that the Ising model with inverse temperature β defined on a graph G = (V,E) is the distribution over {±}Vgiven by . High degree nodes pose a technical challenge in proving polynomial time mixing of the dynamics for many models including the Ising model and coloring. Almost all known sufficient conditions in terms of β or number of colors needed for rapid mixing of Gibbs samplers are stated in terms of the maximum degree of the underlying graph. In this work, we show that for every d < ∞ and the Ising model defined on G (n, d/n), there exists a βd > 0, such that for all β < βd with probability going to 1 as n →∞, the mixing time of the dynamics on G (n, d/n) is polynomial in n. Our results are the first polynomial time mixing results proven for a natural model on G (n, d/n) for d > 1 where the parameters of the model do not depend on n. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in a situation where the actual mixing time is slower than npolylog(n). Our proof exploits in novel ways the local tree like structure of Erd?s‐Rényi random graphs, comparison and block dynamics arguments and a recent result of Weitz. Our results extend to much more general families of graphs which are sparse in some average sense and to much more general interactions. In particular, they apply to any graph for which every vertex v of the graph has a neighborhood N(v) of radius O(log n) in which the induced sub‐graph is a tree union at most O(log n) edges and where for each simple path in N(v) the sum of the vertex degrees along the path is O(log n). Moreover, our result apply also in the case of arbitrary external fields and provide the first FPRAS for sampling the Ising distribution in this case. We finally present a non Markov Chain algorithm for sampling the distribution which is effective for a wider range of parameters. In particular, for G(n, d/n) it applies for all external fields and β < βd, where d tanh(βd) = 1 is the critical point for decay of correlation for the Ising model on G(n, d/n). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

2.
We analyze Markov chains for generating a random k‐coloring of a random graph Gn,d/n. When the average degree d is constant, a random graph has maximum degree Θ(log n/log log n), with high probability. We show that, with high probability, an efficient procedure can generate an almost uniformly random k‐coloring when k = Θ(log log n/log log log n), i.e., with many fewer colors than the maximum degree. Previous results hold for a more general class of graphs, but always require more colors than the maximum degree. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

3.
For a graph G=(V(G),E(G)), a strong edge coloring of G is an edge coloring in which every color class is an induced matching. The strong chromatic index of G, χs(G), is the smallest number of colors in a strong edge coloring of G. The strong chromatic index of the random graph G(n,p) was considered in Discrete Math. 281 (2004) 129, Austral. J. Combin. 10 (1994) 97, Austral. J. Combin. 18 (1998) 219 and Combin. Probab. Comput. 11 (1) (2002) 103. In this paper, we consider χs(G) for a related class of graphs G known as uniform or ε-regular graphs. In particular, we prove that for 0<ε?d<1, all (d,ε)-regular bipartite graphs G=(UV,E) with |U|=|V|?n0(d,ε) satisfy χs(G)?ζ(ε)Δ(G)2, where ζ(ε)→0 as ε→0 (this order of magnitude is easily seen to be best possible). Our main tool in proving this statement is a powerful packing result of Pippenger and Spencer (Combin. Theory Ser. A 51(1) (1989) 24).  相似文献   

4.
A dominator coloring of a graph G is a proper coloring of G in which every vertex dominates every vertex of at least one color class. The minimum number of colors required for a dominator coloring of G is called the dominator chromatic number of G and is denoted by ?? d (G). In this paper we present several results on graphs with ?? d (G)?=???(G) and ?? d (G)?=???(G) where ??(G) and ??(G) denote respectively the chromatic number and the domination number of a graph G. We also prove that if ??(G) is the Mycielskian of G, then ?? d (G)?+?1?????? d (??(G))?????? d (G)?+?2.  相似文献   

5.
Let G be a simple graph. The achromatic number ψ(G) is the largest number of colors possible in a proper vertex coloring of G in which each pair of colors is adjacent somewhere in G. For any positive integer m, let q(m) be the largest integer k such that ≤ m. We show that the problem of determining the achromatic number of a tree is NP-hard. We further prove that almost all trees T satisfy ψ (T) = q(m), where m is the number of edges in T. Lastly, for fixed d and ϵ > 0, we show that there is an integer N0 = N0(d, ϵ) such that if G is a graph with maximum degree at most d, and mN0 edges, then (1 - ϵ)q(m) ≤ ψ (G) ≤ q(m). © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 129–136, 1997  相似文献   

6.
A total coloring of a graph G is a coloring of all elements of G, i.e., vertices and edges, in such a way that no two adjacent or incident elements receive the same color. Let L(x) be a set of colors assigned to each element x of G. Then a list total coloring of G is a total coloring such that each element x receives a color contained in L(x). The list total coloring problem asks whether G has a list total coloring. In this paper, we first show that the list total coloring problem is NP-complete even for series-parallel graphs. We then give a sufficient condition for a series-parallel graph to have a list total coloring, that is, we prove a theorem that any series-parallel graph G has a list total coloring if |L(v)|min{5,Δ+1} for each vertex v and |L(e)|max{5,d(v)+1,d(w)+1} for each edge e=vw, where Δ is the maximum degree of G and d(v) and d(w) are the degrees of the ends v and w of e, respectively. The theorem implies that any series-parallel graph G has a total coloring with Δ+1 colors if Δ4. We finally present a linear-time algorithm to find a list total coloring of a given series-parallel graph G if G satisfies the sufficient condition.  相似文献   

7.
We define a skew edge coloring of a graph to be a set of two edge colorings such that no two edges are assigned the same unordered pair of colors. The skew chromatic index s(G) is the minimum number of colors required for a skew edge coloring of G. We show that this concept is closely related to that of skew Room squares and use this relation to prove that s(G) is at most o(G) + 4. We also find better upper bounds for s(G) when G is cyclic, cubic, or bipartite. In particular we use a construction involving Latin squares to show that if G is complete bipartite of order 2n, s(G) is bounded above by roughly 3n2.  相似文献   

8.
The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let G(n,d) be the class of tricyclic graphs G on n vertices with diameter d and containing no vertex disjoint odd cycles Cp,Cq of lengths p and q with p+q2(mod4). In this paper, we characterize the graphs with minimal energy in G(n,d).  相似文献   

9.
For a nontrivial connected graph G, let ${c: V(G)\to {{\mathbb N}}}For a nontrivial connected graph G, let c: V(G)? \mathbb N{c: V(G)\to {{\mathbb N}}} be a vertex coloring of G, where adjacent vertices may be colored the same. For a vertex v of G, let N(v) denote the set of vertices adjacent to v. The color sum σ(v) of v is the sum of the colors of the vertices in N(v). If σ(u) ≠ σ(v) for every two adjacent vertices u and v of G, then c is called a sigma coloring of G. The minimum number of colors required in a sigma coloring of a graph G is called its sigma chromatic number σ(G). The sigma chromatic number of a graph G never exceeds its chromatic number χ(G) and for every pair a, b of positive integers with ab, there exists a connected graph G with σ(G) = a and χ(G) = b. There is a connected graph G of order n with σ(G) = k for every pair k, n of positive integers with kn if and only if kn − 1. Several other results concerning sigma chromatic numbers are presented.  相似文献   

10.
Let G be a simple graph. The domination polynomial of a graph G of order n is the polynomial ${D(G,x)=\sum_{i=0}^{n} d(G,i) x^{i}}$ , where d(G, i) is the number of dominating sets of G of size i. In this article we investigate the domination polynomial at ?1. We give a construction showing that for each odd number n there is a connected graph G with D(G, ?1) = n.  相似文献   

11.
Let G be a simple connected graph with n vertices and m edges. Denote the degree of vertex vi by d(vi). The matrix Q(G)=D(G)+A(G) is called the signless Laplacian of G, where D(G)=diag(d(v1),d(v2),…,d(vn)) and A(G) denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let q1(G) be the largest eigenvalue of Q(G). In this paper, we first present two sharp upper bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G and give a new proving method on another sharp upper bound for q1(G). Then we present three sharp lower bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G. Moreover, we determine all extremal graphs which attain these sharp bounds.  相似文献   

12.
We consider proper edge colorings of a graph G using colors of the set {1, . . . , k}. Such a coloring is called neighbor sum distinguishing if for any pair of adjacent vertices x and y the sum of colors taken on the edges incident to x is different from the sum of colors taken on the edges incident to y. The smallest value of k in such a coloring of G is denoted by ndiΣ(G). In the paper we conjecture that for any connected graph G ≠ C 5 of order n ≥ 3 we have ndiΣ(G) ≤ Δ(G) + 2. We prove this conjecture for several classes of graphs. We also show that ndiΣ(G) ≤ 7Δ(G)/2 for any graph G with Δ(G) ≥ 2 and ndiΣ(G) ≤ 8 if G is cubic.  相似文献   

13.
Note on Minimally d-Rainbow Connected Graphs   总被引:1,自引:0,他引:1  
An edge-colored graph G, where adjacent edges may have the same color, is rainbow connected if every two vertices of G are connected by a path whose edges have distinct colors. A graph G is d-rainbow connected if one can use d colors to make G rainbow connected. For integers n and d let t(n, d) denote the minimum size (number of edges) in d-rainbow connected graphs of order n. Schiermeyer got some exact values and upper bounds for t(n, d). However, he did not present a lower bound of t(n, d) for \({3 \leq d < \lceil\frac{n}{2}\rceil}\) . In this paper, we improve his lower bound of t(n, 2), and get a lower bound of t(n, d) for \({3 \leq d < \lceil\frac{n}{2}\rceil}\) .  相似文献   

14.
The Hom complexes were introduced by Lovász to study topological obstructions to graph colorings. The vertices of Hom(G,K n ) are the n-colorings of the graph G, and a graph coloring is a partition of the vertex set into independent sets. Replacing the independence condition with any hereditary condition defines a set partition complex. We show how coloring questions arising from, for example, Ramsey theory can be formulated with set partition complexes. It was conjectured by Babson and Kozlov, and proved by Čukić and Kozlov, that Hom(G,K n ) is (nd−2)-connected, where d is the maximal degree of a vertex of G. We generalize this to set partition complexes.  相似文献   

15.
On q-trees     
We show that a graph G with n vertices is a q-tree if and only if its chromatic polynomial is P(G, λ) = λ(λ – 1) ? (λ – q + 1) (λ – q)n-q where nq.  相似文献   

16.
We study the problem of coloring graphs in an online manner. The only known deterministic online graph coloring algorithm with a sublinear performance function was found by [9.], 319–325). Their algorithm colors graphs of chromatic number χ with no more than (2χn)/log* n colors, where n is the number of vertices. They point out that the performance can be improved slightly for graphs with bounded chromatic number. For three-chromatic graphs the number of colors used, for example, is O(n log log log n/log log n). We show that randomization helps in coloring graphs online. We present a simple randomized online algorithm to color graphs with expected number of colors O(2χχ2n(χ−2)/(χ−1)(log n)1/(χ−1)). For three-colorable graphs the expected number of colors our algorithm uses is . All our algorithms run in polynomial time. It is interesting to note that our algorithm compares well with the best known polynomial time offline algorithms. For instance, the best polynomial time algorithm known for three-colorable graphs, due to [4.] pp. 554–562). We also prove a lower bound of Ω((1/(χ − 1))((log n/(12(χ + 1))) − 1)χ−1) for the randomized model. No lower bound for the randomized model was previously known. For bounded χ, our result improves even the best known lower bound for the deterministic case: Ω((log n/log log n)χ−1), due to Noga Alon (personal communication, September 1989).  相似文献   

17.
The graph coloring problem is: Given a positive integer K and a graph G. Can the vertices of G be properly colored in K colors? The problem is NP-complete. The average behavior of the simplest backtrack algorithm for this problem is studied. Average run time over all graphs is known to be bounded. Average run time over all graphs with n vertices and q edges behaves like exp(Cn2q). It is shown that similar results hold for all higher moments of the run time distribution. For all graphs and for graphs where lim n2q exists, the run time has a limiting disibution as n → ∞.  相似文献   

18.
Given an edge‐coloring of a graph G, a subgraph M of G will be called totally multicolored if no two edges of M receive the same color. Let h(G, K1,q) be the minimum integer such that every edge‐coloring of G using exactly h(G, K1,q) colors produces at least one totally multicolored copy of K1,q (the q‐star) in G. In this article, an upper bound of h(G, K1,q) is presented, as well as some applications of this upper bound. © 2005 Wiley Periodicals, Inc.  相似文献   

19.
In this paper, the notion of relative chromatic number χ(G, H) for a pair of graphs G, H, with H a full subgraph of G, is formulated; namely, χ(G, H) is the minimum number of new colors needed to extend any coloring of H to a coloring of G. It is shown that the four color conjecture (4CC) is equivalent to the conjecture (R4CC) that χ(G, H) ≤ 4 for any (possibly empty) full subgraph H of a planar graph G and also to the conjecture (CR3CC) that χ(G, H) ≤ 3 if H is a connected and nonempty full subgraph of planar G. Finally, relative coloring theorems on surfaces other than the plane or sphere are proved.  相似文献   

20.
Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i<j, every vertex of G colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by Γ(G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining Γ(G)?k, for any fixed integer k and show that it is a polynomial time problem. But in general, Grundy number is an NP-complete problem. We show that it is NP-complete even for the complement of bipartite graphs and describe the Grundy number of these graphs in terms of the minimum edge dominating number of their complements. Next we obtain some additive Nordhaus-Gaddum-type inequalities concerning Γ(G) and Γ(Gc), for a few family of graphs. We introduce well-colored graphs, which are graphs G for which applying every greedy coloring results in a coloring of G with χ(G) colors. Equivalently G is well colored if Γ(G)=χ(G). We prove that the recognition problem of well-colored graphs is a coNP-complete problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号