首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A suite of novel (5,3)D G2FT triple resonance NMR experiments encoding highly resolved 5D spectral information is presented for sequential resonance assignment of proteins exhibiting high chemical shift degeneracy. Efficient resonance assignment is achieved by separate joint sampling of (i) chemical shifts which solely serve to provide increased resolution and (ii) shifts which also provide sequential connectivities. In these G2FT experiments, two G-matrix transformations are employed. Peaks are resolved along a first GFT dimension at both Omega(15N) + Omega(13C') and Omega(15N) - Omega(13C'), or at Omega(15N) + Omega(13Calpha) and Omega(15N) - Omega(13Calpha), to break backbone 15N,1HN chemical shift degeneracy. Sequential connectivities are established along a second GFT dimension by measuring intraresidue and sequential correlations at 2Omega(13Calpha), Omega(13Calpha + 13Cbeta), and Omega(13Calpha - 13Cbeta), or at Omega(13Calpha + 1Halpha) and Omega(13Calpha - 1Halpha), to resolve 13Calpha/beta,1Halpha chemical shift degeneracy. It is demonstrated that longitudinal proton relaxation optimization of out-and-back implementations suitable for deuterated proteins and nonlinear data sampling combined with maximum entropy reconstruction further accelerate G2FT NMR data acquisition speed. As a result, the spectral information can be obtained within hours, so that (5,3)D G2FT experiments are viable options for high-throughput structure determination in structural genomics. Applications are presented for 17 kDa alpha-helical protein YqbG and 13.5 kDa protein rps24e, targets of the Northeast Structural Genomics consortium, as well as for 9 kDa protein Z-domain. The high resolving power of the G2FT NMR experiments makes them attractive choices to study alpha-helical globular/membrane or (partially) unfolded proteins, thus promising to pave the way for NMR-based structural genomics of membrane proteins.  相似文献   

3.
Upon alignment of oligonucleotides in a magnetic field, the downfield TROSY component of the 13C-{1H} doublet changes its resonance frequency as a result of residual 13C-1H dipolar coupling (RDC) and residual 13C chemical shift anisotropy (RCSA), and the sum of these two second rank tensors is referred to as the pseudo-CSA. The experimentally measured difference in the resonance frequency of the 13C TROSY component in the aligned and isotropic samples is referred to as residual pseudo-CSA (RPCSA), and it can be used directly as a restraint during structure calculation. Because measurement of the RPCSA involves detection of the narrow TROSY 13C doublet component, it is applicable to systems with larger rotational correlation times than RDC measurement. The method is demonstrated for structure refinement of the helical region of a 24-nt stem-loop segment or ribosomal helix-35, uniformly enriched in 13C and 15N, with RPCSA values measured at 5 and 25 degrees C. Substantial cross-validated improvements in structural accuracy are obtained upon incorporation of RPCSA restraints.  相似文献   

4.
Incomplete motional averaging of chemical shift anisotropy upon weak alignment of nucleic acids and proteins in a magnetic field results in small changes in chemical shift. Knowledge of nucleus-specific chemical shift (CS) tensor magnitudes and orientations is necessary to take full advantage of these measurements in biomolecular structure determination. We report the determination by liquid crystal NMR of the CS tensors for all ribose carbons in A-form helical RNA, using a series of novel 3D NMR pulse sequences for accurate and resolved measurement of the ribose (13)C chemical shifts. The orientation of the riboses relative to the rhombic alignment tensor of the molecule studied, a stem-loop sequence corresponding to helix-35 of 23S rRNA, is known from an extensive set of residual dipolar couplings (RDC), previously used to refine its structure. Singular-value-decomposition fits of the chemical shift changes to this structure, or alternatively to a database of helical RNA X-ray structures, provide the CS tensor for each type of carbon. Quantum chemical calculations complement the experimental results and confirm that the most shielded tensor component lies approximately along the local carbon-oxygen bond axis in all cases and that shielding anisotropy for C3' and C4' is much larger than for C1' and C2', with C5' being intermediate.  相似文献   

5.
6.
We present an NMR strategy for characterizing picosecond-to-nanosecond internal motions in uniformly 13C/15N-labeled RNAs that combines measurements of R1, R1rho, and heteronuclear 13C{1H} NOEs for protonated base (C2, C5, C6, and C8) and sugar (C1') carbons with a domain elongation strategy for decoupling internal from overall motions and residual dipolar coupling (RDC) measurements for determining the average RNA global conformation and orientation of the principal axis of the axially symmetric rotational diffusion. TROSY-detected pulse sequences are presented for the accurate measurement of nucleobase carbon R1 and R1rho rates in large RNAs. The relaxation data is analyzed using a model free formalism which takes into account the very high anisotropy of overall rotational diffusion (Dratio approximately 4.7), asymmetry of the nucleobase CSAs and noncollinearity of C-C, C-H dipolar and CSA interactions under the assumption that all interaction tensors for a given carbon experience identical isotropic internal motions. The approach is demonstrated and validated on an elongated HIV-1 TAR RNA (taum approximately 18 ns) both in free form and bound to the ligand argininamide (ARG). Results show that, while ARG binding reduces the amplitude of collective helix motions and local mobility at the binding pocket, it leads to a drastic increase in the local mobility of "spacer" bulge residues linking the two helices which undergo virtually unrestricted internal motions (S2 approximately 0.2) in the ARG bound state. Our results establish the ability to quantitatively study the dynamics of RNAs which are significantly larger and more anisotropic than customarily studied by NMR carbon relaxation.  相似文献   

7.
Well-resolved and unambiguous through-bond correlations and NOE data are crucial for high-quality protein structure determination by NMR. In this context, we present here (4, 3)D reduced dimensionality (RD) experiments: H(CC)CONH TOCSY and NOESY HNCO--which instead of (15)N shifts exploit the linear combination of (15)N(i) and (13)C'(i-1) shifts (where i is a residue number) to resolve the through-bond (1)H-(1)H correlations and through-space (1)H-(1)H NOEs. The strategy makes use of the fact that (15)N and (13)C' chemical shifts when combined linearly provide a dispersion which is better compared to those of the individual chemical shifts. The extended dispersion thus available in these experiments will help to obtain the unambiguous side chain and accurate NOE assignments especially for medium-sized alpha-helical or partially unstructured proteins [molecular weight (MW) between 12-15 kDa] as well as higher MW (between 15-25 kDa) folded proteins where spectral overlap renders inaccurate and ambiguous NOEs. Further, these reduced dimensionality experiments in combination with routinely used (15)N and (13)C' edited TOCSY and NOESY experiments will provide an alternative way for high-quality NMR structure determination of large unstable proteins (with very high shift degeneracy), which are not at all amenable to 4D NMR. The utility of these experiments has been demonstrated here using (13)C/(15)N labeled ubiquitin (76 aa) protein.  相似文献   

8.
13C, 14N, 15N, 17O, and 35Cl NMR parameters, including chemical shift tensors and quadrupolar tensors for 14N, 17O, and 35Cl, are calculated for the crystalline forms of various amino acids under periodic boundary conditions and complemented by experiment where necessary. The 13C shift tensors and 14N electric field gradient (EFG) tensors are in excellent agreement with experiment. Similarly, static 17O NMR spectra could be precisely simulated using the calculation of the full chemical shift (CS) tensors and their relative orientation with the EFG tensors. This study allows correlations to be found between hydrogen bonding in the crystal structures and the 17O NMR shielding parameters and the 35Cl quadrupolar parameters, respectively. Calculations using the two experimental structures for L-alanine have shown that, while the calculated isotropic chemical shift values of 13C and 15N are relatively insensitive to small differences in the experimental structure, the 17O shift is markedly affected.  相似文献   

9.
A new heteronuclear NMR pulse sequence, the quantitative Gamma(HCN) experiment, for the determination of the glycosidic torsion angle chi in (13)C,(15)N-labeled oligonucleotides is described. The Gamma(HCN) experiment allows measurement of CH dipole-dipole, N chemical shift anisotropy cross-correlated relaxation rates (Gamma(C1'H1',N1)(DD,CSA) and Gamma(C2'H2',N9)(DD,CSA) for pyrimidines Gamma(C1'H1'N9)(DD,CSA) and Gamma(C2'H2',N9)(DD,CSA) for purines). A nucleotide-specific parametrization for the dependence of these Gamma-rates on chi based on (15)N chemical shift tensors determined by solid-state NMR experiments on mononucleosides (Stueber, D.; Grant, D. M. J. Am. Chem. Soc. 2002, 124, 10539-10551) is presented. For a 14-mer and a 30-mer RNA of known structures, it is found that the Gamma(HCN) experiment offers a very sensitive parameter for changes in the angle chi and allows restraining of chi with an accuracy of around 10 degrees for residues which do not undergo conformational averaging. Therefore, the Gamma(HCN) experiment can be used for the determination of chi in addition to data derived from (3)J(C,H)-coupling constants. As shown for the 30-mer RNA, the derived torsion angle information can be incorporated as additional restraint, improving RNA structure calculations.  相似文献   

10.
The chemical shifts of the unprotonated carbons in the proton-deficient nucleobases of RNA are rarely reported, despite the valuable information that they contain about base-pairing and base-stacking. We have developed 13C-detected 2D-experiments to identify the unprotonated 13C in the RNA bases and have assigned all the base nuclei of uniformly 13C,15N-labeled HIV-2 TAR-RNA. The 13C chemical shift distributions revealed perturbations correlated with the base-pairing and base-stacking properties of all four base-types. From this work, we conclude that the information contained in the chemical shift perturbations within the base rings can provide valuable restraint information for solving RNA structures, especially in conformational averaged regions, where NOE-based information is not available.  相似文献   

11.
The (13)C and (15)N chemical shift tensor principal values for adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine are measured on natural abundance samples. Additionally, the (13)C and (15)N chemical shielding tensor principal values in these four nucleosides are calculated utilizing various theoretical approaches. Embedded ion method (EIM) calculations improve significantly the precision with which the experimental principal values are reproduced over calculations on the corresponding isolated molecules with proton-optimized geometries. The (13)C and (15)N chemical shift tensor orientations are reliably assigned in the molecular frames of the nucleosides based upon chemical shielding tensor calculations employing the EIM. The differences between principal values obtained in EIM calculations and in calculations on isolated molecules with proton positions optimized inside a point charge array are used to estimate the contributions to chemical shielding arising from intermolecular interactions. Moreover, the (13)C and (15)N chemical shift tensor orientations and principal values correlate with the molecular structure and the crystallographic environment for the nucleosides and agree with data obtained previously for related compounds. The effects of variations in certain EIM parameters on the accuracy of the shielding tensor calculations are investigated.  相似文献   

12.
We demonstrate the simultaneous measurement of several backbone torsion angles psi in the uniformly (13)C,(15)N-labeled alpha-Spectrin SH3 domain using two different 3D 15N-13C-13C-15N dipolar-chemical shift magic-angle spinning (MAS) NMR experiments. The first NCCN experiment utilizes double quantum (DQ) spectroscopy combined with the INADEQUATE type 13C-13C chemical shift correlation. The decay of the DQ coherences formed between 13C'(i) and 13C(alphai) spin pairs is determined by the "correlated" dipolar field due to 15N(i)-13C(alphai) and 13C'(i)-15N(i+1) dipolar couplings and is particularly sensitive to variations of the torsion angle in the regime |psi| > 140 degrees. However, the ability of this experiment to constrain multiple psi-torsion angles is limited by the resolution of the 13C(alpha)-(13)CO correlation spectrum. This problem is partially addressed in the second approach described here, which is an NCOCA NCCN experiment. In this case the resolution is enhanced by the superior spectral dispersion of the 15N resonances present in the 15N(i+1)-13C(alphai) part of the NCOCA chemical shift correlation spectrum. For the case of the 62-residue alpha-spectrin SH3 domain, we determined 13 psi angle constraints with the INADEQUATE NCCN experiment and 22 psi constraints were measured in the NCOCA NCCN experiment.  相似文献   

13.
HIV-1 and influenza viral fusion peptides are biologically relevant model fusion systems and, in this study, their membrane-associated structures were probed by solid-state NMR (13)C chemical shift measurements. The influenza peptide IFP-L2CF3N contained a (13)C carbonyl label at Leu-2 and a (15)N label at Phe-3 while the HIV-1 peptide HFP-UF8L9G10 was uniformly (13)C and (15)N labeled at Phe-8, Leu-9 and Gly-10. The membrane composition of the IFP-L2CF3N sample was POPC-POPG (4:1) and the membrane composition of the HFP-UF8L9G10 sample was a mixture of lipids and cholesterol which approximately reflects the lipid headgroup and cholesterol composition of host cells of the HIV-1 virus. In one-dimensional magic angle spinning spectra, labeled backbone (13)C were selectively observed using a REDOR filter of the (13)C-(15)N dipolar coupling. Backbone chemical shifts were very similar at -50 and 20 degrees C, which suggests that low temperature does not appreciably change the peptide structure. Relative to -50 degrees C, the 20 degrees C spectra had narrower signals with lower integrated intensity, which is consistent with greater motion at the higher temperature. The Leu-2 chemical shift in the IFP-L2CF3N sample correlates with a helical structure at this residue and is consistent with detection of helical structure by other biophysical techniques. Two-dimensional (13)C-(13)C correlation spectra were obtained for the HFP-UF8L9G10 sample and were used to assign the chemical shifts of all of the (13)C labels in the peptide. Secondary shift analysis was consistent with a beta-strand structure over these three residues. The high signal-to-noise ratio of the 2D spectra suggests that membrane-associated fusion peptides with longer sequences of labeled amino acids can also be assigned with 2D and 3D methods.  相似文献   

14.
The periodicity in nucleic acid duplex structures is shown to be correlated to the periodicity in residual dipolar couplings (RDCs) in the form of an "RDC wave". This "RDC wave" is characteristic of the alignment of the duplex in the magnetic field, and hence fitting of the data allows the duplex global orientation (, Phi) to be extracted. Further, because the "RDC wave" is fit as a data set of a corresponding secondary structure element, the degeneracy problem is greatly reduced. Consequently, with the global orientation (, Phi) determined, local bond vector conformations are defined. The fit is demonstrated in the examples of the imino RDCs of the negative regulator of splicing RNA fragment (NRS23) and for the C1'H1' RDCs of the Dickerson dodecamer.  相似文献   

15.
Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method.  相似文献   

16.
Here we examine the effect of magic-angle spinning (MAS) rate upon lineshape and observed peak position for backbone carbonyl (C') peaks in NMR spectra of uniformly-(13)C,15N-labeled (U-(13)C,15N) solid proteins. 2D N-C' spectra of U-(13)C,15N microcrystalline protein GB1 were acquired at six MAS rates, and the site-resolved C' lineshapes were analyzed by numerical simulations and comparison to spectra from a sparsely labeled sample (derived from 1,3-(13)C-glycerol). Spectra of the U-(13)C,15N sample demonstrate large variations in the signal-to-noise ratio and peak positions, which are absent in spectra of the sparsely labeled sample, in which most 13C' sites do not possess a directly bonded 13CA. These effects therefore are a consequence of rotational resonance, which is a well-known phenomenon. Yet the magnitude of this effect pertaining to chemical shift assignment has not previously been examined. To quantify these effects in high-resolution protein spectra, we performed exact numerical two- and four-spin simulations of the C' lineshapes, which reproduced the experimentally observed features. Observed peak positions differ from the isotropic shift by up to 1.0 ppm, even for MAS rates relatively far (a few ppm) from rotational resonance. Although under these circumstances the correct isotropic chemical shift values may be determined through simulation, systematic errors are minimized when the MAS rate is equivalent to approximately 85 ppm for 13C. This moderate MAS condition simplifies spectral assignment and enables data sets from different labeling patterns and spinning rates to be used most efficiently for structure determination.  相似文献   

17.
The investigation of non‐coding RNAs requires RNAs containing modifications at every possible position within the oligonucleotide. Here, we present the chemo‐enzymatic RNA synthesis containing photoactivatable or 13C,15N‐labelled nucleosides. All four ribonucleotides containing ortho‐nitrophenylethyl (NPE) photocages, photoswitchable azobenzene C‐nucleotides and 13C,15N‐labelled nucleotides were incorporated position‐specifically in high yields. We applied this approach for the synthesis of light‐inducible 2′dG‐sensing riboswitch variants and detected ligand‐induced structural reorganization upon irradiation by NMR spectroscopy. This chemo‐enzymatic method opens the possibility to incorporate a wide range of modifications at any desired position of RNAs of any lengths beyond the limits of solid‐phase synthesis.  相似文献   

18.
We report chemical shift assignments of the drug-resistant S31N mutant of M2(18-60) determined using 3D magic-angle-spinning (MAS) NMR spectra acquired with a (15)N-(13)C ZF-TEDOR transfer followed by (13)C-(13)C mixing by RFDR. The MAS spectra reveal two sets of resonances, indicating that the tetramer assembles as a dimer of dimers, similar to the wild-type channel. Helicies from the two sets of chemical shifts are shown to be in close proximity at residue H37, and the assignments reveal a difference in the helix torsion angles, as predicted by TALOS+, for the key resistance residue N31. In contrast to wild-type M2(18-60), chemical shift changes are minimal upon addition of the inhibitor rimantadine, suggesting that the drug does not bind to S31N M2.  相似文献   

19.
We report the experimental determination of the (13)C(alpha) chemical shift tensors of Ala, Leu, Val, Phe, and Met in a number of polycrystalline peptides with known X-ray or de novo solid-state NMR structures. The 700 Hz dipolar coupling between (13)C(alpha) and its directly bonded (14)N permits extraction of both the magnitude and the orientation of the shielding tensor with respect to the C(alpha)-N bond vector. The chemical shift anisotropy (CSA) is recoupled under magic-angle spinning using the SUPER technique (Liu et al., J. Magn. Reson. 2002, 155, 15-28) to yield quasi-static chemical shift powder patterns. The tensor orientation is extracted from the (13)C-(14)N dipolar modulation of the powder line shapes. The magnitudes and orientations of the experimental (13)C(alpha) chemical shift tensors are found to be in good accord with those predicted from quantum chemical calculations. Using these principal values and orientations, supplemented with previously measured tensor orientations from (13)C-(15)N and (13)C-(1)H dipolar experiments, we are able to predict the (phi, psi, chi(1)) angles of Ala and Val within 5.8 degrees of the crystallographic values. This opens up a route to accurate determination of torsion angles in proteins based on shielding tensor magnitude and orientation information using labeled compounds, as well as the structure elucidation of noncrystalline organic compounds using natural abundance (13)C NMR techniques.  相似文献   

20.
利用稳定同位素的磁性和质量同位素效应已成为研究有机结构化学的重要手段。我们为研究部位芳香及其芝渡金属如Cu(Ⅱ),Ni(Ⅱ),Co(Ⅱ),Fe(Ⅱ)配合物的光  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号