首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Researches on the synthesis of sulfur-containing heterocyclic compounds at the G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, are reviewed. They include the synthesis of thiolane by the recyclization of THF in hydrogen sulfide; the synthesis thiacycloalkanes by the hydrogenation of thiophenes; the synthesis of 4-methylthiazole by the reaction of SO2 with methylisopropylideneamine; the synthesis of thiophenes by the heterocyclization of aliphatic compounds of sulfur and dehydrogenation of thiacycloalkanes; the synthesis of thiolane 1,1-dioxide by the hydrogenation of 2- and 3-thiolene 1,1-dioxides and 3-alkoxythiolane 1,1-dioxides; the synthesis of sulfoxides by the oxidation of thiacycloalkanes with atmospheric oxygen.  相似文献   

2.
The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society.  相似文献   

3.
微波辅助组合合成的研究进展   总被引:2,自引:0,他引:2  
周中振  何彦祯  曹敏  杨光富 《有机化学》2006,26(11):1500-1507
微波辅助组合合成技术是近年来发展起来的一种新的制备化合物库的组合化学技术, 它不仅可以克服传统固相组合合成技术以及液相组合合成技术无法提高产物收率的不足, 而且利用该技术所制得的化合物库中对应的是高纯度的单一化合物, 采用高通量筛选技术可以快速直接地确定高活性结构, 极大地提高了新药开发的效率. 主要就近年来微波辅助组合合成技术的研究进展情况进行介绍, 内容包括固相组合合成、基于聚合物支载的催化剂的组合合成、液相组合合成、氟相组合合成以及组合平行合成等.  相似文献   

4.
Cell-free protein synthesis in rabbit reticulocyte lysate translation mixtures has been studied during multi-hour incubations. In an impaired lysate obtained from cells stored at 0°C before lysis, and showing a low initial rate of synthesis, translation could be stimulated by a factor of 4 by including RNase inhibitor and additional ATP and GTP. In translation mixtures prepared from normal lysates, protein synthesis could be improved by ∼50% by the addition of excess GTP. The observed increases in protein synthesis were obtained by improved maintenance of the initial rate of synthesis.  相似文献   

5.
对比采用溶剂热合成、传统固相合成与溶胶-凝胶合成技术,制备了四方相BiOC1和Nd3+掺杂BiOCl光催化材料.运用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)及紫外-可见吸收光谱(UV-Vis),研究了不同合成方法所制备BiOCl材料的相结构、形貌和紫外-可见光吸收性能;并以甲基橙溶液为模拟废水,研究了不同方法所制备的BiOCl材料的光催化性能.结果表明:溶剂热合成的BiOCl是由纳米片组装成粒径小于1μm微球,紫外-可见吸收边为335 nm;固相合成所得BiOCl结晶度较高,其片状颗粒粒径约为6μm,紫外-可见吸收边为430n m;溶胶-凝胶合成法制得BiOCl片状颗粒粒径约为3~4 μm,紫外-可见吸收边为430 nm.进一步地对比研究了稀土离子Nd3+掺杂前后BiOCl样品的结构、紫外-可见光吸收特性,可以发现,Nd3+掺杂后样品的相结构及形貌均无变化,但吸收边均发生不同程度的红移,以溶胶-凝胶法制得的样品效果最为明显,并具有最优的光催化性能.  相似文献   

6.
Ghosh AK  Liu C 《Organic letters》2001,3(4):635-638
[reaction: see text] (-)-Doliculide, a potent antitumor agent, is synthesized stereoselectively in a convergent manner. The key strategy involves a stereoselective synthesis of the polyketide unit and synthesis of the D-tyrosine derivative, followed by assembly of the fragments by an esterification and cycloamidation reaction sequence. The synthesis of the polyketide fragment was achieved by an iterative asymmetric synthesis to install stereoselectively both 1,3-dimethyl groups and the 1,3-diol unit by utilizing asymmetric cyclopropanations and Sharpless asymmetric epoxidations as the key steps.  相似文献   

7.
A convergent total synthesis of dictyostatin is described. Key features of the synthesis include the use of titanium-mediated cyclizations of (silyloxy)enynes for the synthesis of stereotriads, a subunit coupling by metathesis, and macrocyclization by intramolecular Horner-Wadsworth-Emmons olefination.  相似文献   

8.
[reaction: see text] Total chemical synthesis of proteins by chemoselective ligation relies on C-terminal peptide thioesters as building blocks. Their preparation by standard Fmoc solid-phase peptide synthesis is made difficult by the lability of thioesters to aminolysis by the secondary amines used for removal of the Fmoc group. Here we present a novel backbone amide linker (BAL) strategy for their synthesis in which the thioester functionality is masked as a trithioortho ester throughout the synthesis.  相似文献   

9.
Characterized by long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure, intermetallics have attracted increasing attention in the area of chemical synthesis and catalytic applications. Liquid-phase synthesis of intermetallics has arisen as the promising methodology due to its precise control over size, shape, and resistance toward sintering compared with the traditional metallurgy. This short review tends to provide perspectives on the liquid-phase synthesis of intermetallics in terms of both thermodynamics and methodology, as well as its applications in various catalytic reactions. Specifically, basic thermodynamics and kinetics in the synthesis of intermetallics will be first discussed, followed by discussing the main factors that will affect the formation of intermetallics during synthesis. The application of intermetallics in electrocatalysis will be demonstrated case by case at last. We conclude the review with perspectives on the future developments with respect to both synthesis and catalytic applications.  相似文献   

10.
The preparation of native S-palmitoylated (S-palm) membrane proteins is one of the unsolved challenges in chemical protein synthesis. Herein, we report the first chemical synthesis of S-palm membrane proteins by removable-backbone-modification-assisted Ser/Thr ligation (RBMGABA-assisted STL). This method involves two critical steps: 1) synthesis of S-palm peptides by a new γ-aminobutyric acid based RBM (RBMGABA) strategy, and 2) ligation of the S-palm RBM-modified peptides to give the desired S-palm product by the STL method. The utility of the RBMGABA-assisted STL method was demonstrated by the synthesis of rabbit S-palm sarcolipin (SLN) and S-palm matrix-2 (M2) ion channel. The synthesis of S-palm membrane proteins highlights the importance of developing non-NCL methods for chemical protein synthesis.  相似文献   

11.
光化学合成在有机合成化学,特别在一些非常见结构的合成中占有特殊的地位,能大大缩短传统合成化学的步骤而经济实用.本文主要以天然产物及其中间体的合成,举例介绍有机合成光化学及其研究现状.  相似文献   

12.
The last two decades have been an era of rapid progress in peptide research. This era was begun by the work of Sanger on the amino acid sequence determination of insulin and by du Vigneaud on the structure determination and synthesis of oxytocin. This period has seen impressive progress in the structure elucidation and synthesis of many peptides of natural origin and of great biological significance, as well as in methods for sequence determination and chemical synthesis of peptides [1–4]. Perfection of techniques and instruments for automatic determination of the amino acid sequence of peptides and proteins has made possible a greatly broadened understanding of genetics and evolution as well as the more chemical areas of mechanism of action of enzymes and hormones, and physical chemistry of peptides and proteins. Effective methods of peptide synthesis are crucial to progress in this area, because only by synthesis can adequate amounts of important peptides be made available for chemical, biological, and physical studies, as well as for exploration of the structure-function aspects of biological molecules. In general, progress in peptide synthesis has lagged far behind that in amino acid sequence determination. This is not surprising since effective peptide synthesis requires a very sophisticated system of selectively removable protecting groups for functions of the amino acids involved, and the synthesis of a large heteropolytner of defined sequence requires near perfection of each one of the many steps of the assembly. The classical approach to peptide synthesis, using standard organic chemical methods of synthesis and purification of intermediates, has yielded impressive results during these two decades. However, the special problems associated with the assembly of large molecules make staggering investments in time and materials necessary for the synthesis of large peptides or proteins by classical methods.  相似文献   

13.
The direct enzymatic synthesis of peptides from amino acids is widely used as a useful alternative to chemical synthesis. However, good yields of such enzyme-catalyzed reactions require altered reaction conditions to overcome the bias for hydrolysis in aqueous medium. We argue that the synthesis/hydrolysis equilibrium can be shifted toward synthesis in aqueous medium by immobilizing the amine on solid support. In this report, we show the first examples of solid-phase peptide synthesis catalyzed by a protease in bulk aqueous buffer.  相似文献   

14.
Despite the advances of solid phase peptide synthesis (SPPS) the synthesis of long peptides is still challenging. Microwave irradiation and conventional heating are considered to improve the efficiency of SPPS. It has been shown that conventional heating and heating by microwave irradiation improves the efficiency of solid phase synthesis of peptides that are prone to aggregation as compared to the synthesis at room temperature. In this Letter, the influence of elevated temperature and microwave irradiation on the homogeneity of the synthesis product of a 58-mer peptide affibody has been compared. A detailed analysis by high resolution HPLC and LC-MS mass spectrometry using a high-mass resolution Orbitrap Exactive mass spectrometer was performed. This study revealed that neither thermal heating nor microwave heating improves the yield and purity of the crude product as compared to the synthesis at room temperature. In contrast, the formation of undesirable side products rather increased by microwave irradiation. These results indicate that neither heating nor microwave enhancement of solid phase synthesis does allow a significant improvement of peptide sequences with a low aggregation potential.  相似文献   

15.
Mathematical and numerical models of the yttrium aluminium garnet (YAG) synthesis are presented in the article. The models allow the effective computer simulation of the YAG synthesis. The synthesis by sol–gel and solid-state reaction methods is considered in the article. The question concerning the reasons for the observed changes in the preparation temperature by changing synthesis method is answered. The inverse modelling problem is solved: using known experimental data (synthesis time, dimensions of reactants) the unknown input parameters of the model (diffusion and reaction rate coefficients) are calculated.  相似文献   

16.
Significant progress has been achieved in the last years on microwave synthesis of zeolite membranes. In many cases, microwave synthesis has proven to remarkably reduce the synthesis time. In addition, microwave synthesis could also result in different membrane morphology, orientation, composition, and thus the different permeation characteristics as compared with those synthesized by conventional heating. This review attempts to summarize the obtained progress in microwave synthesis of zeolite membranes. Some topics are discussed, including: (1) case study of microwave synthesis of zeolite membranes, e.g. LTA, MFI, AFI, and other types of zeolite membranes; (2) differences between conventional and microwave synthesis; (3) formation mechanism and the so called “specific microwave effect” in the case of microwave synthesis of zeolite membranes; (4) scaling-up of zeolite membrane production by employing microwave heating. The latter three topics are mainly focused on LTA type zeolite membranes. Concluding remarks and future perspective are also suggested in the end.  相似文献   

17.
The sequence of events by which protein, RNA, and DNA emerged during early biological evolution is one of the most profound questions regarding the origin of life. The contemporary role of aminoacyl-adenylates as intermediates in both ribosomal and nonribosomal peptide synthesis suggests that they may have served as substrates for uncoded peptide synthesis during early evolution. We report a highly active peptidyl transferase ribozyme family, isolated by in vitro selection, that efficiently catalyzes dipeptide synthesis by using an aminoacyl-adenylate substrate. It was characterized by sequence and structural analysis and kinetic studies. Remarkably, the ribozyme catalyzed the formation of 30 different dipeptides, the majority of rates being within 5-fold that of the Met-Phe dipeptide required by the selection. The isolation of this synthetic ribozyme fosters speculation that ribozyme-mediated uncoded peptide synthesis may have preceded coded peptide synthesis.  相似文献   

18.
苯酚是重要的有机合成中间体,当前主要通过异丙苯法合成苯酚的技术路线存在制备流程长、消耗丙烯、副产丙酮等不足。以分子氧为氧化剂由苯氧化直接合成苯酚则具有潜在重大的经济效益、社会效益和环境效益,已成为催化与有机合成等研究领域中极具挑战性的热点课题之一。本文较为系统地总结了分子氧氧化苯通过一步法合成苯酚的研究工作,着重综述了用于该反应的催化剂如Pd、Cu、V等金属或其化合物,也归纳了影响此反应的主要因素,并介绍相应的反应机理。最后,对分子氧催化氧化苯合成苯酚反应的研究提供了一些建议和展望。  相似文献   

19.
微波合成SrTiO3的工艺、结构与性能研究   总被引:8,自引:1,他引:8  
应用微波会成这一材料合成新方法制备SrTiO3,研究了不同工艺条件下微波合成产物的结构,确定出制备纯净SrTiIO。的合成条件.对微波合成的工艺及其影响因素进行详细的探索,从合成产物的显微结构、粒度分布、比表面积、烧结性能等方面比较了微波合成与常规固相合成的差别,结果表明微波合成与各种常规方法相比有合成时间短、合成工艺简单、合成产物性能好等特点,是一种有发展潜力的材料合成技术.  相似文献   

20.
This paper reviews our current studies on the high pressure synthesis of polyimides and related condensation polymers. After a brief introduction of the solid-state thermal synthesis of polyimides starting from nylon-salt-type monomers, the paper deals with the high pressure synthesis of polyimides, the preparation of polyimide-silica hybrid materials by the combination of the above synthetic method for polyimides and the sol-gel reaction for silica synthesis, and the high pressure synthesis of polybenzoxazoles and addition-type polyaminoimide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号