首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While residual dipolar couplings (RDCs) are an established method in high-resolution biomolecular NMR, their use for structure determination of small molecules in organic solvents is limited by the alignment media available. Only recently stretched polystyrene (PS) gels were introduced for the measurement of RDCs on small compounds that allowed urgently needed free scalability of the induced anisotropy. Here, the properties of such stretched PS gels in different organic solvents as well as for different magnetic field strengths and temperatures are studied and practical NMR-spectroscopic aspects are discussed.  相似文献   

2.
In NMR spectroscopy, residual dipolar couplings (RDCs) have emerged as one of the most exquisite probes of biological structure and dynamics. The measurement of RDCs relies on the partial alignment of the molecule of interest, for example by using a liquid crystal as a solvent. Here, we establish bacterial type 1 pili as an alternative liquid-crystalline alignment medium for the measurement of RDCs. To achieve alignment at pilus concentrations that allow for efficient NMR sample preparation, we elongated wild-type pili by recombinant overproduction of the main structural pilus subunit. Building on the extraordinary stability of type 1 pili against spontaneous dissociation and unfolding, we show that the medium is compatible with challenging experimental conditions such as high temperature, the presence of detergents, organic solvents or very acidic pH, setting it apart from most established alignment media. Using human ubiquitin, HIV-1 TAR RNA and camphor as spectroscopic probes, we demonstrate the applicability of the medium for the determination of RDCs of proteins, nucleic acids and small molecules. Our results show that type 1 pili represent a very useful alternative to existing alignment media and may readily assist the characterization of molecular structure and dynamics by NMR.  相似文献   

3.
The concept of using residual dipolar couplings (RDCs) for the structure determination of organic molecules is applied to the simultaneous assignment of all diastereotopic protons in strychnine. To use this important NMR parameter the molecule has to be aligned in the magnetic field. Here we present a new alignment medium for organic substrates. The optimization of the alignment properties of mixtures of poly-gamma-ethyl-L-glutamate (PELG) and CDCl(3) are described and the alignment properties of PELG at different concentrations are evaluated. A comparison of PELG with poly-gamma-benzyl-L-glutamate (PBLG) shows considerable differences in the magnitude of alignment for strychnine in the two alignment media. PELG induces a lower degree of order and makes the measurement of residual dipolar couplings (RDCs) in strychnine possible. All one-bond C-H RDCs of strychnine in PELG were determined by using 2D heteronuclear single quantum coherence (HSQC) spectroscopy. The strategy for the extraction of RDCs for methylene groups is described in detail. The RDCs and order parameters are used to assign pairs of diastereotopic protons. This methodology can distinguish not only one pair of diastereotopic protons but it can be used to assign all pairs of diastereotopic protons simultaneously. Two different calculation approaches to achieve this task are described in detail.  相似文献   

4.
Residual dipolar coupling constants (RDCs) are being increasingly applied to elucidate the configuration and conformation of small organic molecules, peptides and oligosaccharides. In this paper we describe a set of robust 1D NMR methods for accurate and precise measurement of proton-proton RDCs of small and medium size molecules. The performance of these techniques is not impeded by the presence of overlapping and broad (1)H multiplets that are typically observed for such molecules in weakly aligned media. The use of these techniques provides access to a large pool of proton-proton RDCs opening new avenues for the solution structure elucidation of medium size molecules by NMR. The techniques are illustrated on the determination of the alignment tensor of the reducing monosaccharide ring of cellobiose and the determination of the relative configuration of sodium cholate.  相似文献   

5.
Experimentally measured residual dipolar couplings (RDCs) are highly valuable for atomic‐resolution structural and dynamic studies of molecular systems ranging from small molecules to large proteins by solution NMR spectroscopy. Here we demonstrate the first use of magnetic‐alignment behavior of lyotropic liquid‐crystalline polymer macro‐nanodiscs (>20 nm in diameter) as a novel alignment medium for the measurement of RDCs using high‐resolution NMR. The easy preparation of macro‐nanodiscs, their high stability against pH changes and the presence of divalent metal ions, and their high homogeneity make them an efficient tool to investigate a wide range of molecular systems including natural products, proteins, and RNA.  相似文献   

6.
The measurement of independent sets of NMR residual dipolar couplings (RDCs) in multiple alignment media can provide a detailed view of biomolecular structure and dynamics, yet remains experimentally challenging. It is demonstrated here that independent sets of RDCs can be measured for ubiquitin using just a single alignment medium composed of aligned bacteriophage Pf1 particles embedded in a strained polyacrylamide gel matrix. Using this composite medium, molecular alignment can be modulated by varying the angle between the directors of ordering for the Pf1 and strained gel matrix, or by varying the ionic strength or concentration of the Pf1 particles. This approach offers significant advantages in that greater experimental control can be exercised over the acquisition of multi-alignment RDC data while a homogeneous chemical environment is maintained across all of the measured RDC data.  相似文献   

7.
Residual dipolar couplings (RDCs) have attracted attention in light of their great impact on the structural elucidation of organic molecules. However, the effectiveness of RDC measurements is limited by the shortage of alignment media compatible with widely used organic solvents, such as DMSO. Herein, we present the first liquid crystal (LC) based alignment medium that is compatible with pure DMSO, thus enabling RDC measurements of polar and intermediate polarity molecules. The liquid crystals were obtained by grafting polymer brushes onto graphene oxide (GO) using free radical polymerization. The resulting new medium offers several advantages, such as absence of background signals, narrow line shapes, and tunable alignment. Importantly, this medium is compatible with π‐conjugated molecules. Moreover, sonication‐induced fragmentation can reduce the size of GO sheets. The resulting anisotropic medium has moderate alignment strength, which is a prerequisite for an accurate RDC measurement.  相似文献   

8.
Residual dipolar coupling (RDC) is a powerful structural parameter for the determination of the constitution, conformation, and configuration of organic molecules. Herein, we report the first liquid crystal‐based orienting medium that is compatible with MeOH, thus enabling RDC acquisitions of a wide range of intermediate to polar organic molecules. The liquid crystals were produced from self‐assembled oligopeptide nanotubes (AAKLVFF), which are stable at very low concentrations. The presented alignment medium is highly homogeneous, and the size of RDCs can be scaled with the concentration of the peptide. To assess the accuracy of the RDC measurement by employing this new medium, seven bioactive natural products from different classes were chosen and analyzed. The straightforward preparation of the anisotropic alignment sample will offer a versatile and robust protocol for the routine RDC measurement of natural products.  相似文献   

9.
A high-resolution, phase-sensitive, natural abundance F2-coupled 1H-13C HSQC (F2HSQC) NMR experiment was developed to measure simultaneously both (n)D(HH) and 1D(CH) residual dipolar couplings (RDCs) of small molecules present in a chiral polypeptide liquid crystal solvent system composed of poly-gamma-benzyl-L-glutamate (PBLG) in CDCl3. Because this is an indirect-detection NMR experiment, the relatively small amount of sample (7.5 mg in this study) and short acquisition times (5 h) that are required make this HSQC experiment well suited for samples that are either limited in solubility or in quantity or require short analysis times. The F2HSQC experiment can be performed without any specialized equipment or sample modification and can enhance our ability to measure RDCs accurately and rapidly in polypeptide liquid crystal solvents.  相似文献   

10.
High-level deuteration is a prerequisite for the study of high molecular weight systems using liquid-state NMR. Here, we present new experiments for the measurement of proton-proton dipolar couplings in CH(2)D methyl groups of (13)C labeled, highly deuterated (70-80%) proteins. (1)H-(1)H residual dipolar couplings (RDCs) have been measured in two alignment media for 57 out of 70 possible methyl containing residues in the 167-residue flavodoxin-like domain of the E. coli sulfite reductase. These data yield information on the orientation of the methyl symmetry axis with respect to the molecular alignment frame. The alignment tensor characteristics were obtained very accurately from a set of backbone RDCs measured on the same protein sample. To demonstrate that accurate structural information is obtained from these data, the measured methyl RDCs for Valine residues are analyzed in terms of chi(1) torsion angles and stereospecific assignment of the prochiral methyl groups. On the basis of the previously determined backbone solution structure of this protein, the methyl RDC data proved sufficient to determine the chi(1) torsion angles in seven out of nine valines, assuming a single-rotamer model. Methyl RDCs are complementary to other NMR data, for example, methyl-methyl NOE, to determine side chain conformation in high molecular weight systems.  相似文献   

11.
Together with NOE and J coupling, one‐bond residual dipolar coupling (RDC), which reports on the three‐dimensional orientation of an internuclear vector in the molecular frame, plays an important role in the conformation and configuration analysis of small molecules in solution by NMR spectroscopy. When the molecule has few C? H bonds, or too many bonds are in parallel, the available RDCs may not be sufficient to obtain the alignment tensor used for structure elucidation. Long‐range RDCs that connect nuclei over multiple bonds are normally not parallel to the single bonds and therefore complement one‐bond RDCs. Herein we present a method for extracting the long‐range RDC of a chosen proton or group of protons to all remotely connected carbon atoms, including non‐protonated carbon atoms. Alignment tensors fitted directly to the total long‐range couplings (T=J+D) enabled straightforward analysis of both the long‐range and one‐bond RDCs for strychnine.  相似文献   

12.
Approaches developed thus for extracting structural and dynamical information from RDCs have rested on the assumption that motions do not affect molecular alignment. However, it is well established that molecular alignment in ordered media is dependent on conformation, and slowly interconverting conformational substates may exhibit different alignment properties. Neglecting these correlation effects can lead to aberrations in the structural and dynamical analysis of RDCs and diminish the utility of RDCs in probing motions between domains having similar alignment propensities. Here, we introduce a new approach based on measurement of magnetic field induced residual dipolar couplings in nucleic acids which can explicitly take into account such correlations and demonstrate measurements of motions between two "magnetically equivalent" domains in the transactivation response element (TAR) RNA.  相似文献   

13.
A protein fusion construct of human ubiquitin with an N-terminal lanthanide binding tag (LBT) enables observation of long-range orientational restraints in solution NMR from residual dipolar couplings (RDCs) due to paramagnetic alignment of the protein. The paramagnetic lanthanide ions Tb3+, Dy3+, and Tm3+ are shown to bind to the LBT and induce different alignment tensors, in agreement with theory. RDCs, measured relative to the diamagnetic Lu3+, range from -7.6 to 5.5 Hz for Tb3+ and -6.6 to 6.1 Hz for Dy3+, while an opposite alignment tensor is observed for Tm3+ (4.5 to -2.9 Hz) at 800 MHz. Experimental RDCs are in excellent agreement with those predicted on the basis of the X-ray structure of the protein.  相似文献   

14.
Bicelles are a major medium form to produce weak alignment of soluble proteins for residual dipolar coupling (RDC) measurements. The obstacle to using the same type of bicelles for transmembrane proteins with solution-state NMR spectroscopy is the loss of signals due to the adhesion or penetration of the proteins into large bicelles, resulting in slow protein tumbling. In this study, weak alignment of the second and third transmembrane domains (TM23) of the human glycine receptor (GlyR) was achieved in low-q bicelles (q = DMPC/DHPC). Although protein-free bicelles with such low q would likely show isotropic properties, the insertion of TM23 induced weakly preferred orientations so that the RDC of the embedded protein can be measured. The extent of the alignment increased but the TM23 signal intensity decreased when q was varied from 0.19 to 0.60. A q of 0.50 was found to be an optimal compromise between alignment and the signal-to-noise ratio. In each pair of NMR experiments for RDC measurements, the same sample and pulse sequence were used, with one being performed at high-resolution magic-angle spinning to obtain pure J-couplings without RDC. A meaningful structure refinement in bicelles was possible by iteratively fitting the experimental RDCs to the back-calculated RDCs using the high-resolution NMR structure of GlyR TM23 in trifluoroethanol as the starting template. Combination of this method with the conventional high-resolution NMR in membrane mimicking mixtures of water and organic solvents offers an attractive way to derive structural information for membrane proteins in their native environment.  相似文献   

15.
The study of bound-state conformations of ligands interacting with proteins is important to the understanding of protein function and the design of drugs that alter function. Traditionally, transferred nuclear Overhauser effects (trNOEs), measured from NMR spectra of ligands in rapid exchange between bound and free states, have been used in these studies, owing to the inherent heavy weighting of bound-state data in the averaged ligand signals. In principle, residual dipolar couplings (RDCs) provide a useful complement to NOE data in that they provide orientational constraints as opposed to distance constraints, but use in ligand-binding applications has been limited due to the absence of heavy weighting of bound-state data. A widely applicable approach to increasing the weighting of bound-state data in averaged RDCs measured on ligands is presented. The approach rests on association of a His-tagged protein with a nickel-chelate-carrying lipid inserted into the lipid bilayer-like alignment media used in the acquisition of RDCs. The approach is validated through the observation of bound-state RDCs for the disaccharide, lactose, bound to the carbohydrate recognition domain of the mammalian lectin, galectin-3.  相似文献   

16.
Determining the conformational preferences of molecules in solution remains a considerable challenge. Recently, the use of residual dipolar coupling (RDC) analysis has emerged as a key method to address this. Whilst to date the majority of the applications have focused on biomolecules including proteins and DNA, the use of RDCs for studying small molecules is gaining popularity. Having said that, the method continues to develop, and here, we describe an early case study of the quantification of conformer populations in small molecules using RDC analysis. Having been inspired to study conformational preferences by unexpected differences in the NMR spectra and the reactivity of related natural products, we showed that the use of more established techniques was unsatisfactory in explaining the experimental observations. The use of RDCs provided an improved understanding that, following use of methods to quantify conformer populations using RDCs, culminated in a rationalisation of the contrasting diastereoselectivities observed in a ketone reduction reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Correct structural assignment of small molecules and natural products is critical for drug discovery and organic chemistry. Anisotropy‐based NMR spectroscopy is a powerful tool for the structural assignment of organic molecules, but it relies on the utilization of a medium that disrupts the isotropic motion of molecules in organic solvents. Here, we establish a quantitative correlation between the atomic structure of the alignment medium, the molecular structure of the small molecule, and molecule‐specific anisotropic NMR parameters. The quantitative correlation uses an accurate three‐dimensional molecular alignment model that predicts residual dipolar couplings of small molecules aligned by poly(γ‐benzyl‐l ‐glutamate). The technique facilitates reliable determination of the correct stereoisomer and enables unequivocal, rapid determination of complex molecular structures from extremely sparse NMR data.  相似文献   

18.
On the basis of the measurement of NH residual dipolar couplings (RDCs) in 11 different alignment media, an RDC-based order parameter is derived for each residue in the protein ubiquitin. Dipolar couplings are motionally averaged in the picosecond to millisecond time range and, therefore, reflect motion slower than the inverse overall tumbling correlation time of the protein. It is found that there is considerable motion that is slower than the correlation time and could not be detected with previous NMR methodology. Amplitudes and anisotropies of the motion can be derived from the model-free analysis. The method can be applied provided that at least five sufficiently different alignment media can be found for the biomolecule under investigation.  相似文献   

19.
Anisotropic NMR parameters, such as residual dipolar couplings (RDCs), residual chemical shift anisotropies (RCSAs) and residual quadrupolar couplings (RQCs or ΔνQ), appear in solution‐state NMR when the molecules under study are subjected to a degree of order. The tunable alignment by reversible compression/relaxation of gels (PMMA and p‐HEMA) is an easy, user‐friendly, and very affordable method to measure them. When using this method, a fraction of isotropic NMR signals is observed in the NMR spectra, even at a maximum degree of compression. To explain the origin of these isotropic signals we decided to investigate their physical location inside the NMR tube using deuterium 1D imaging and MRI micro‐imaging experiments. It was observed that after a certain degree of compression the gels start to buckle and they generate pockets of isotropic solvent, which are never eliminated. The amount of buckling depends on the amount of cross‐linker and the length of the gel.  相似文献   

20.
Anisotropic NMR spectroscopy, revealing residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) has emerged as a powerful tool to determine the configurations of synthetic and complex natural compounds. The deduction of the absolute in addition to the relative configuration is one of the primary goals in the field. Therefore, the investigation of the enantiodiscriminating capabilities of chiral alignment media becomes essential. While RDCs and RCSAs are now used for the determination of the relative configuration routinely, RCSAs have not been measured in chiral alignment media such as chiral liquid crystals. Herein, we present this application by measuring RCSAs for chiral analytes such as indanol and isopinocampheol in the lyotropic liquid crystalline phase of an L-valine derived helically chiral polyacetylenes. We have also demonstrated that a single 1D 13C−{1H} NMR spectrum suffices to get the RCSAs circumventing the necessity to acquire two spectra at two alignment conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号