首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wu Y  Jing H  Dong Z  Zhao Q  Wu H  Li F 《Inorganic chemistry》2011,50(16):7412-7420
In this work, a neutral iridium(III) complex [Ir(bt)(2)(acac)] (Hbt = 2-phenylbenzothiazole; Hacac = acetylacetone) has been realized as a Hg(II)-selective sensor through UV-vis absorption, phosphorescence emission, and electrochemical measurements and was further developed as a phosphorescent agent for monitoring intracellular Hg(II). Upon addition of Hg(II) to a solution of [Ir(bt)(2)(acac)], a noticeable spectral blue shift in both absorption and phosphorescent emission bands was measured. (1)H NMR spectroscopic titration experiments indicated that coordination of Hg(II) to the complex induces fast decomposition of [Ir(bt)(2)(acac)] to form a new complex, which is responsible for the significant variations in optical and electrochemical signals. Importantly, cell imaging experiments have shown that [Ir(bt)(2)(acac)] is membrane permeable and can be used to monitor the changes in Hg(II) levels within cells in a ratiometric phosphorescence mode.  相似文献   

2.
A neutral phosphorescent coordination compound bearing a benzimidazole ligand, Ir(pbi)(2)(acac) (Hpbi = 1,2-diphenyl-1H-benzo[d]imidazole; Hacac = acetylacetone), is demonstrated to be the first example of a sulfur-free iridium complex for the detection of Hg(2+) cations with high selectivity and sensitivity. Ir(pbi)(2)(acac) shows a multisignaling response towards mercury(II) ions through UV-vis absorption, phosphorescence and electrochemistry measurements. Upon addition of Hg(2+) ions, solutions of this complex change from yellow to colorless, which could be observed easily by the naked eye, while its phosphorescence turns from bright green (λ(PLmax) = 520 nm) into faint skyblue (λ(PLmax) = 476 nm), and the detection limit is calculated to be 2.4 × 10(-7) mol L(-1). (1)H NMR spectroscopic titration as well as ESI-MS results indicate that the decomposition of Ir(pbi)(2)(acac) in the presence of Hg(2+) through rupture of Ir-O bonds is responsible for the significant variations in both optical and electrochemical signals.  相似文献   

3.
Biscyclometalated iridium(III) complexes with an ancillary acetylacetone ligand, Ir(L)(2)(acac), (L = 2-(benzo[b]thiophen-2-yl)pyridine (btp), 1-phenylisoquinoline (piq), 2-phenylbenzothiazole (bt), 2-phenylpyridine (ppy), acac = deprotonated acetylacetone), demonstrate spectroscopic changes in their UV-Vis absorption and luminescent emission under acidic conditions. Such changes were found to be the same as those observed when certain mercury salts exist in the systems. Because some iridium(III) complexes have sulfur-containing ligands (i.e., btp and bt), a question was then raised as for whether or not the spectroscopic changes are associated with the specific affinity of Hg(2+) to the sulfur atom. Extensive studies performed in this work unambiguously proved that the observed spectroscopic changes were solely the results of the acid induced departure of acac and the follow-up coordination of solvent acetonitrile to the iridium(III) center and that the generally anticipated Hg(2+)-S affinity and its effect on the photophysical properties of iridium(III) luminophores did not play a role.  相似文献   

4.
The proligand 4,6-di-(4-tert-butylphenyl)pyrimidine LH(2) can undergo cycloplatination with K(2)PtCl(4) at one of the two aryl rings to give, after treatment with sodium acetylacetonate, a mononuclear complex Pt(N^C-LH)(acac) (denoted Pt). If an excess of K(2)PtCl(4) is used, a dinuclear complex of the form [Pt(acac)](2){μ-(N^C-L-N^C)} (Pt(2)) is obtained instead, where the pyrimidine ring acts as a bridging unit. Alternatively, the mononuclear complex can undergo cyclometalation with a different metal ion. Thus, reaction of Pt with IrCl(3)·3H(2)O (2:1 ratio) leads, after treatment with sodium acetylacetonate, to an unprecedented mixed-metal complex of the form Ir{μ-(N^C-L-N^C)Pt(acac)}(2)(acac) (Pt(2)Ir). The mononuclear iridium complex Ir(N^C-LH)(2)(acac) (Ir) has also been prepared for comparison. The UV-visible absorption and photoluminesence properties of the four complexes and of the proligand have been investigated. The complexes are all highly luminescent, with quantum yields of around 0.5 in solution at room temperature. The introduction of the additional metal centers is found to lead to a substantial red-shift in absorption and emission, with λ(max) in the order Pt < Pt(2) < Ir < Pt(2)Ir. The trend is interpreted with the aid of electrochemical data and density functional theory calculations, which suggest that the red-shift is due primarily to a progressive stabilization of the lowest unoccupied molecular orbital (LUMO). The radiative decay constant is also increased. This versatile design strategy may offer a new approach for tuning and optimizing the luminescence properties of d-block metal complexes for contemporary applications.  相似文献   

5.
Liu Y  Li M  Zhao Q  Wu H  Huang K  Li F 《Inorganic chemistry》2011,50(13):5969-5977
Phosphorescent iridium(III) complexes have been attracting increasing attention in applications as luminescent chemosensors. However, no instance of an iridium(III) complex being used as a molecular logic gate has hitherto been reported. In the present study, two iridium(III) complexes, [Ir(ppy)(2)(PBT)] and [Ir(ppy)(2)(PBO)], have been synthesized (PBT, 2-(2-Hydroxyphenyl)-benzothiazole; PBO, 2-(2-hydroxyphenyl)-benzoxazole), and their chemical structures have been characterized by single-crystal X-ray analysis. Theoretical calculations and detailed studies of the photophysical and electrochemical properties of these two complexes have shown that the N^O ligands dominate their luminescence emission properties. Moreover, [Ir(ppy)(2)(PBT)], containing a sulfur atom in the N^O ligand, can serve as a highly selective chemodosimeter for Hg(2+) with ratiometric and naked-eye detection, which is associated with the dissociation of the N^O ligand PBT from the complex. Furthermore, complex [Ir(ppy)(2)(PBT)] has been further developed as an AND and INHIBIT logic gate with Hg(2+) and histidine as inputs.  相似文献   

6.
We report a theoretical analysis of a series of heteroleptic iridium(III) complexes (dox)(2)Ir(acac) [dox = 2,5-diphenyl-1,3,4-oxadiazolato-N,C(2), acac = acetylacetonate] (1a), (fox)(2)Ir(acac) [fox = 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazolato-N,C(2)] (1b), (fox)(2)Ir(Et(2)dtc) [Et(2)dtc = N,N'-diethyldithiocarbamate] (2), (fox)(2)Ir(Et(2)dtp) [Et(2)dtp = O,O'-diethyldithiophosphate] (3), (pypz)(2)Ir(acac) [pypz = 3,5-di(2-pyridyl)pyrazole] (4a), (O-pypz)(2)Ir(acac) (4b), (S-pypz)(2)Ir(acac) (4c) and (bptz)(2)Ir(acac) [bptz = 3-tert-butyl-5-(2-pyridyl)triazole] (5) by using the density functional theory (DFT) method to investigate their electronic structures and photophysical properties and obtain further insights into the phosphorescent efficiency mechanism. Meanwhile, we also investigate the influence of ancillary and cyclometalated ligands on the properties of the above complexes. The results reveal that the nature of the ancillary ligands can influence the electron density distributions of frontier molecular orbitals and their energies, resulting in change in transition character and emission color, while the different cyclometalated ligands have a large impact on the charge transfer performances of the studied complexes. The calculated absorption and luminescence properties of the four complexes 1a, 1b, 2 and 3 are compared with the available experimental data and a good agreement is obtained. Further, the assumed complexes 4a and 4b possess better charge transfer abilities and more balanced charge transfer rates, and they are potential candidates as blue-emitting materials.  相似文献   

7.
A series of bis(2-phenylbenzothiozolato-N,C(2'))iridium(acetylacetonate) [(bt)(2)Ir(acac)] derivatives, 1-4, were synthesized. Different substituents (CF(3), F, CH(3), OCH(3)) were introduced in the benzothiazole ring to study the substituent effect on the photophysical, electrochemical properties and electroluminescent performance of the complexes, and finally to select high-performance phosphors for use in organic light-emitting diodes (OLEDs). All complexes 1-4 and (bt)(2)Ir(acac) are orange-emitting with tiny spectral difference, despite the variation of the substituent. However, the phosphorescent quantum yield increases with the electron-withdrawing ability of the substituent. This is in contrast to the previous observation that the substituent in the phenyl ring bonded to the metal center of (bt)(2)Ir(acac) not only affected the luminescent quantum efficiency but also greatly tuned the emission color of the complexes. Quantum chemical calculations revealed that the substituents in this position do not make a significant contribution to both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), which probably accounts for the fact that they do no strongly influence the bandgap and emission color of the complexes. Orange OLEDs were fabricated using 1-4 as doped emitters. The electron-withdrawing CF(3) and F groups favor improving the electroluminescence efficiency in comparison with that of the parent (bt)(2)Ir(acac), while electron-donating CH(3) and OCH(3) are not favorable for light emission. The complex 1 based OLED exhibited a maximum luminance efficiency of 54.1 cd A(-1) (a power efficiency of 24 lm W(-1) and an external quantum efficiency of 20%), which are among the best results ever reported for vacuum deposited orange OLEDs so far.  相似文献   

8.
Chen H  Zhao Q  Wu Y  Li F  Yang H  Yi T  Huang C 《Inorganic chemistry》2007,46(26):11075-11081
A new homocysteine-selective sensor based on the iridium(III) complex Ir(pba)2(acac) (Hpba = 4-(2-pyridyl)benzaldehyde; acac = acetylacetone) was synthesized, and its' photophysical properties were studied. Upon the addition of homocysteine (Hcy) to a semi-aqueous solution of Ir(pba)2(acac), a color change from orange to yellow and a luminescent variation from deep red to green were evident to the naked eye. The blue-shift of the absorption spectrum and enhancement of the phosphorescence emission upon the addition of Hcy can be attributed to the formation of a thiazinane group by selective reaction of the aldehyde group of Ir(pba)2(acac) with Hcy, which was confirmed by 1H NMR studies. Importantly, Ir(pba)2(acac) shows uniquely luminescent recognition of Hcy over other amino acids (including cysteine) and thiol-related peptides (reduced glutathione), in agreement with the higher luminescent quantum yield of the adduct of Ir(pba)2(acac) with Hcy (0.038) compared with that of the adduct with Cys (~0.002). Both surface charge analysis and the electrochemical measurement indicated that a photoinduced electron-transfer process for Ir(pba)2(acac)-Cys might be responsible for the high specificity of Ir(pba)2(acac) toward Hcy over Cys.  相似文献   

9.
Two newly prepared oligothienylpyridines, 5-(2-pyridyl)-5'-dodecyl-2,2'-bithiophene, HL(2), and 5-(2-pyridyl)-5'-dodecyl-2,2':5',2'-ter-thiophene, HL(3), bind to platinum(II) and iridium(III) as N∧C-coordinating ligands, cyclometallating at position C(4) in the thiophene ring adjacent to the pyridine, leaving a chain of either one or two pendent thiophenes. The synthesis of complexes of the form [PtL(n)(acac)] and [Ir(L(n))(2)(acac)] (n = 2 or 3) is described. The absorption and luminescence properties of these four new complexes are compared with the behavior of the known complexes [PtL(1)(acac)] and [Ir(L(1))(2)(acac)] {HL(1) = 2-(2-thienyl)pyridine}, and the profound differences in behavior are interpreted with the aid of time-dependent density functional theory (TD-DFT) calculations. Whereas [PtL(1)(acac)] displays solely intense phosphorescence from a triplet state of mixed ππ*/MLCT character, the phosphorescence of [PtL(2)(acac)] and [PtL(3)(acac)] is weak, strongly red shifted, and accompanied by higher-energy fluorescence. TD-DFT reveals that this difference is probably due to the metal character in the lowest-energy excited states being strongly attenuated upon introduction of the additional thienyl rings, such that the spin-orbit coupling effect of the metal in promoting intersystem crossing is reduced. A similar pattern of behavior is observed for the iridium complexes, except that the changeover to dual emission is delayed to the terthiophene complex [Ir(L(3))(2)(acac)], reflecting the higher degree of metal character in the frontier orbitals of the iridium complexes than their platinum counterparts.  相似文献   

10.
Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Br?nsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.  相似文献   

11.
Solution-processible conjugated electrophosphorescent polymers   总被引:4,自引:0,他引:4  
We report the synthesis and photophysical study of a series of solution-processible phosphorescent iridium complexes. These comprise bis-cyclometalated iridium units [Ir(ppy)(2)(acac)] or [Ir(btp)(2)(acac)] where ppy is 2-phenylpyridinato, btp is 2-(2'-benzo[b]thienyl)pyridinato, and acac is acetylacetonate. The iridium units are covalently attached to and in conjugation with oligo(9,9-dioctylfluorenyl-2,7-diyl) [(FO)(n)] to form complexes [Ir(ppy-(FO)(n))(2)(acac)] or [Ir(btp-(FO)(n))(2)(acac)], where the number of fluorene units, n, is 1, 2, 3, approximately 10, approximately 20, approximately 30, or approximately 40. All the complexes exhibit emission from a mixed triplet state in both photoluminescence and electroluminescence, with efficient quenching of the fluorene singlet emission. Short-chain complexes, 11-13, [Ir(ppy-(FO)(n)-FH)(2)(acac)] where n = 0, 1, or 2, show green light emission, red-shifted through the FO attachment by about 70 meV, but for longer chains there is quenching because of the lower energy triplet state associated with polyfluorene. In contrast, polymer complexes 18-21 [Ir(btp-(FO)(n))(2)(acac)] where n is 5-40 have better triplet energy level matching and can be used to provide efficient red phosphorescent polymer light-emitting diodes, with a red shift due to the fluorene attachment of about 50 meV. We contrast this small (50-70 meV) and short-range modification of the triplet energies through extended conjugation, with the much more substantial evolution of the pi-pi* singlet transitions, which saturate at about n = 10. These covalently bound materials show improvements in efficiency over simple blends and will form the basis of future investigations into energy-transfer processes occurring in light-emitting diodes.  相似文献   

12.
A series of [−2, −1, 0] charged-ligand based iridium(III) complexes of [Ir(bph)(bpy)(acac)] ( 1 ), [Ir(bph)(2MeO-bpy)(acac)] ( 2 ), [Ir(bph)(2CF3-bpy)(acac)] ( 3 ), [Ir(bph)(bpy)(2tBu-acac)] ( 4 ) and [Ir(bph)(bpy)(CF3-acac)] ( 5 ), which using biphenyl as dianionic ligand [−2], acetylacetone (or its derivatives) as monoanionic ligand [−1], and 2,2′-bipyridine (or its derivatives) as neutral ligand [0] were designed and synthesized. The chemical structures were well characterized. All of the ligands have simple chemical structures, thus further making the complexes have excellent thermal stability and are easy to sublimate and purify. Phosphorescent characteristics with short emission lifetime were demonstrated for these emitters. Notably, all of the complexes exhibit remarkable deep red/near infrared emission, which is quite different from the reported [−1, −1, −1] charged-ligand based iridium(III) complexes. The photophysical properties of these complexes are regularly improved by introducing electron-donating or -withdrawing groups into [−1] or [0] charged-ligand. The related organic light-emitting diodes exhibited deep red/near infrared emission with acceptable external quantum efficiency and low turn-on voltage (<2.6 V). This work provides a new idea for the construction of new type phosphorescent iridium(III) emitters with different valence states of [−2, −1, 0] charged ligands, thus offering new opportunities and challenges for their optoelectronic applications.  相似文献   

13.
A new series of iridium(III) mixed ligand complexes TBA[Ir(ppy)(2)(CN)(2)] (1), TBA[Ir(ppy)(2)(NCS)(2)] (2), TBA[Ir(ppy)(2)(NCO)(2)] (3), and [Ir(ppy)(2)(acac)] (4) (ppy = 2-phenylpyridine; acac = acetoylacetonate, TBA = tetrabutylammonium cation) have been developed and fully characterized by UV-vis, emission, IR, NMR, and cyclic voltammetric studies. The lowest energy MLCT transitions are tuned from 463 to 494 nm by tuning the energy of the HOMO levels. These complexes show emission maxima in the blue, green, and yellow region of the visible spectrum and exhibit unprecedented phosphorescence quantum yields, 97 +/- 3% with an excited-state lifetimes of 1-3 micros in dichloromethane solution at 298 K. The near-unity quantum yields of these complexes are related to an increased energy gap between the triplet emitting state and the deactivating e(g) level that have been achieved by meticulous selection of ligands having strong ligand field strength. Organic light-emitting devices were fabricated using the complex 4 doped into a purified 4,4'-bis(carbazol-9-yl)biphenyl host exhibiting a maximum of the external quantum efficiencies of 13.2% and a power efficiency of 37 lm/W for the 9 mol % doped system.  相似文献   

14.
Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.  相似文献   

15.
以2-(菲-9)-吡啶、1-(菲-9)异喹啉和喹喔啉并[2,3-l]菲为配体,合成了3个新颖的红色到近红外磷光配合物(pypt)2Ir(acac)、(sqpt)2Ir(acac)和(qupt)2Ir(acac).对这些配合物的吸收、发射光谱和电化学性质进行了研究,结果发现,菲取代基的性质主要影响配合物的LUMO能级,随着菲取代基共轭程度的增加,吸收光谱和发射光谱红移,光致发光(PL)光谱从619 nm红移到704 nm.将4%的(sqpt)2Ir(acac)掺杂在PVK+PBD主体材料中制备了掺杂磷光发光器件,器件电致发光(EL)光谱的λmax为704 nm,器件的EL光谱从红色一直延伸到近红外区域.  相似文献   

16.
Shin IS  Kang YT  Lee JK  Kim H  Kim TH  Kim JS 《The Analyst》2011,136(10):2151-2155
Though recently Ir(III) complexes have attracted much interest in electrochemiluminescent (ECL) analysis due to their high emission in various wavelengths, there were a few studies reported on its analytical applications. In this study, we evaluate the ECL from (pq)(2)Ir(acac) (pq = 2-phenylquinolate, acac = acetylacetonate) for the use in flow injection analysis. An aqueous solution of the analyte and (pq)(2)Ir(acac) passes through the reaction/observation cell, and then ECL reaction is generated by electrochemical initiation on the analyte and (pq)(2)Ir(acac). Tri-n-propylamine (TPrA) is used as a representative analyte for evaluation. Additionally, a comparison is made of the relative ECL intensities obtained for a variety of analytes including oxalate, amino acids, aliphatic amines, and NADH. The (pq)(2)Ir(acac) produces efficient ECL upon TPrA exhibiting the limit of detection of 5 nM with a linear range of 3 orders of magnitude in concentration whereas 20 nM is observed in the conventional Ru(bpy)(3)(2+) system. It shows particular sensitivity advantages for oxalate, proline, and tartaric acid. The ECL generation upon various analytes proposes direct applicability of (pq)(2)Ir(acac) as a post-column detection tool.  相似文献   

17.
新型黄色磷光吡嗪铱(Ⅲ)配合物的合成及发光性质   总被引:5,自引:0,他引:5  
利用2,3-二苯基吡嗪与水合三氯化铱反应合成了一种新型吡嗪铱的配合物[Ir(dphp)2(acac)],通过元素分析,1HNMR和MS对配合物结构进行了表征,并研究了配合物的吸收光谱和光致发光光谱.利用该材料作为磷光染料制备了结构为[ITO/NPB(30nm)/NPB;8%[Ir(dphp)2(acac)](25nm)/PBD(10nm)/Alq3(30nm)/Mg;Ag(质量比9;1)(130nm)的电致发光器件,研究了其电致发光光谱.结果表明,该配合物在393和528nm处存在单重态1MLCT(金属到配体的电荷跃迁)和三重态3MLCT的吸收峰;荧光光谱结果显示,在588nm处有较强的金属配合物三重态的磷光发射;电致发光光谱显示,该器件的启动电压是3.25V,器件的最大亮度为11478cd/m2,外量子效率为13.85%,器件的流明效率为15.54lm/W,是一种新型的高效率黄色磷光材料.  相似文献   

18.
The reactions of the early-late trinuclear complex [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(CO)(4)] (1) with electrophiles have been found to occur on the iridium atoms with no other involvement of the early metal than in electronic effects. The reaction with iodine gave two isomers of the diiridium(II) complex [Cp(acac)Ti(mu(3)-S)(2)Ir(2)I(2)(CO)(4)] differentiated by the relative positions of the iodo ligands on the iridium atoms. The reactions with iodoalkanes are highly stereoselective to give one sole isomer of formula [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(R)(I)(CO)(4)] (R = CH(3), CH(2)I, CHI(2)) with a carbonyl and the iodo ligand trans to the metal-metal bond. The structures of the symmetrical isomer with the iodo ligands trans to the metal-metal bond and that of the compound with R = CHI(2) have been solved by X-ray diffraction methods. The stereoselectivity of the oxidative-addition reactions can be rationalized assuming the influence of steric effects of the groups on the titanium center and a radical-like mechanism. Reactions of 1 with the activated acetylenes, dimethylacetylenedicarboxylate and methylacetylenecarboxylate, gave the complexes [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(mu-eta(1)-RC=CCO(2)Me)(CO)(4)] (R = CO(2)Me, H), with the alkyne bridging the two iridium centers as a cis-dimetalated olefin and the C=C bond parallel to the Ir-Ir axis. Two isomers resulting from the disposition of the alkyne along the Ir-Ir vector were observed in solution for the compound with the nonsymmetrical alkyne (R = H), while only one was observed for the compound with R = CO(2)Me. An exchange, fast in the NMR time scale, of the apical with the equatorial carbonyls occured in the complexes [Cp(acac)Ti(mu(3)-S)(2)Ir(2)(mu-eta(1)-RC=CCO(2)Me)(CO)(4)], producing their equivalence in the (13)C((1)H) NMR spectra.  相似文献   

19.
The structural and electronic properties of two heteroleptic iridium complexes Ir(dfppy)2(pic) (FIrpic) and Ir(dfppy)2(acac) (FIracac) have been investigated theoretically, where dfppy = 2-(2,4-difluorophenyl) pyridine, pic = picolinic acid, and acac = acetoylacetonate. The geometries of ground and excited states are optimized at PBE0/LANL2DZ and CIS/LANL2DZ levels, respectively. Time-dependent density functional theory (TDDFT) method is employed to explore the absorption and emission properties. In the ground state, the highest-occupied molecular orbital has a significant mixture of metal Ir(d) and dfppy(pi), the lowest-unoccupied orbital locates primarily on pi* of pic for FIrpic and pi* of dfppy for FIracac. The luminescence of each complex originates from the lowest triplet excited state, which is assigned to the mixing of metal-to-ligand charge transfer and intraligand charge transfer characters. The effects of ancillary ligands pic and acac on absorption and emission spectra are observed by analysis of TDDFT results. The connection between the nature of excited states and the behavior of the complexes with different ancillary ligands is elucidated.  相似文献   

20.
The photophysical and electrochemical properties of the novel complexes [Ir(ppy)(2)(5-X-1,10-phen)][PF(6)] (ppy = 2-phenylpyridine, phen = phenanthroline, X = NMe(2), NO(2)), [Ir(pq)(2)(5-X-1,10-phen)][PF(6)] (pq = 2-phenylquinoline, X = H, Me, NMe(2), NO(2)), [Ir(ppy)2(4-Me,7-Me-1,10-phen)][PF(6)], [Ir(ppy)2(5-Me,6-Me-1,10-phen)][PF(6)], [Ir(ppy)(2)(2-Me,9-Me-1,10-phen)][PF(6)], and [Ir(pq)2(4-Ph,7-Ph-1,10-phen)][PF(6)] have been investigated and compared with those of the known reference complexes [Ir(ppy)(2)(4-Me or 5-H or 5-Me-1,10-phen)][PF(6)] and [Ir(ppy)(2)(4-Ph,7-Ph-1,10-phen)][PF(6)], showing how the nature and number of the phenanthroline substituents tune the color of the emission, its quantum yield, and the emission lifetime. It turns out that the quantum yield is strongly dependent on the nonradiative decay. The geometry, ground state, electronic structure, and excited electronic states of the investigated complexes have been calculated on the basis of density functional theory (DFT) and time-dependent DFT approaches, thus substantiating the electrochemical measurements and providing insight into the electronic origin of the absorption spectra and of the lowest excited states involved in the light emission process. These results provide useful guidelines for further tailoring of the photophysical properties of ionic Ir(III) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号