首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetization and magnetization reversal processes that occur through the mechanism of incoherent rotation of magnetic moments in cubic ferromagnets with limited sizes are investigated theoretically. It is established that the appropriate model representation of magnetic inhomogeneities arising in the region of defects is provided by 0° domain walls. The influence of the external magnetic field on the structure and the stability region of the 0° domain walls is determined. This makes it possible to reveal the characteristic features of the magnetization reversal of real crystals as a function of the material and defect parameters, in particular, in the vicinity of the spin-reorientation phase transition.  相似文献   

2.
使用飞秒时间分辨抽运-探测磁光克尔光谱技术,研究了激光加热GdFeCo磁光薄膜跨越铁磁补偿温度时稀土-过渡金属(RE-TM)反铁磁交换耦合行为和超快磁化翻转动力学. 实验观察到由于跨越铁磁补偿温度、净磁矩携带者交换而引起的磁化翻转反常克尔磁滞回线以及在同向外磁场下,反常回线上大于和小于矫顽力部分的饱和磁化强度不同,显示出GdFeCo中RE与TM之间的非完全刚性反铁磁耦合. 在含有Al导热底层的GdFeCo薄膜上观测到饱和磁场下激光感应磁化态翻转及再恢复的完整超快动力学过程. 与剩磁态的激光感应超快退磁化过 关键词: 补偿温度 磁化翻转 反铁磁耦合 GdFeCo  相似文献   

3.
The domain structure in strained garnet ferrite films and its behavior in an external magnetic field are studied using the Faraday effect. Based on the experimental results, a model of magnetization reversal in thin polycrystalline layers is proposed that describes the process of remagnetization as the development of fractal clusters. The model proposed is verified using a computer simulation of magnetization reversal.  相似文献   

4.
Antidots of size 0.5 μm are prepared by patterning iron-nickel films with a focused ion beam. The magnetization distribution in antidot arrays is examined with Lorentz transmission electron microscopy. It is shown that one side of the array makes an angle of about 20° with the easy magnetic axis of the film. Magnetization reversal in the direction close to the easy magnetic axis starts with domain nucleation at the antidot edges that are perpendicular to the applied field and adjacent to the unpatterned region of the film, and propagates as the domain walls move. Magnetization reversal in the direction close to the hard magnetic axis starts with magnetization rotation outside the patterned region at the antidot edges and propagates as the domain walls execute a complicated motion. It is demonstrated that some areas between the edges of adjacent antidots can carry information bits. Results obtained are explained in terms of competition between the demagnetizing energy, energy of internal anisotropy, and misorientation effect. The feasibility of such structures as high-density storage elements is discussed.  相似文献   

5.
Measurements are reported on the magnetization reversal in submicron magnetic rings fabricated by high-resolution electron beam lithography and lift-off from cobalt thin films. For all dimensions investigated, with diameters of 300-800 nm and a thickness of 10-50 nm, the flux closure state is the stable magnetization configuration. However, with increasing diameter and decreasing film thickness a metastable near single domain state can be obtained during the reversal process in an in-plane applied field.  相似文献   

6.
The magnetization reversal of MnAs epitaxial films on GaAs (0 0 1) substrates was investigated using a Kerr microscope. The direct observation of the change in domain structure under magnetic fields revealed characteristic magnetization reversal process of MnAs films with a ladder-type domain structure. The nucleus of the magnetization reversal region appears and propagates to neighboring α-MnAs lines, and then the ladder-type structures cover all over the surface. Finally the domain wall displacement occurs to expand the domain. The change in magnetic domain reflects the characteristic ridge/groove structures of MnAs films.  相似文献   

7.
An experimental study is made of the effect of an in-plane field H p of various orientations on the domain structure and shape of the hysteresis loops of epitaxial iron garnet films with the (210) orientation. The characteristic of the magnetization reversal process (in fields somewhat lower than the anisotropy field) is taken to be the critical fields H p1, H p2, and H p3, for which the magnetization reversal processes is interrupted at distinct stages. A method is proposed for constructing the phase diagram of the magnetic states of films, using measurements of the critical fields H p for different amplitudes of the magnetization reversal field H z . Two directions in the plane of the film are determined with an accuracy of a fraction of a degree from the hysteresis loops, where in the corresponding field Hp the transition from a single-domain state to a multidomain state occurs as a second-order phase transition. The characteristic changes in the shape of the hysteresis loop are consistent with the features in the reorganization of the domain structure of the (210) film. The preferential orientations of the stripe domain structure of the samples are determined relative to the crystal axes as determined by x-ray methods. Zh. Tekh. Fiz. 67, 32–35 (June 1997) Deceased  相似文献   

8.
Polarized neutron reflectometry is used to probe the in-plane projection of the net-magnetization vector M--> of polycrystalline Fe films exchange coupled to twinned (110) MnF (2) or FeF (2) antiferromagnetic (AF) layers. The magnetization reversal mechanism depends upon the orientation of the cooling field with respect to the twinned microstructure of the AF, and whether the applied field is increased to (or decreased from) a positive saturating field; i.e. , the magnetization reversal is asymmetric. The reversal of the sample magnetization from one saturated state to the other occurs via either domain wall motion or magnetization rotation on opposite sides of the same hysteresis loop.  相似文献   

9.
In this paper we investigate the role of magneto-crystalline anisotropy on the domain wall (DW) properties of tubular magnetic nanostructures. Based on a theoretical model and micromagnetic simulations, we show that either cubic or uniaxial magneto-crystalline anisotropies have some influence on the domain wall properties (wall size, propagation velocity and energy barrier) and then on the overall magnetization reversal mechanism. Besides the characterization of the transverse and vortex domain wall sizes for different anisotropies, we predict an anisotropy dependent transition between the occurrence of transverse and vortex domain walls in tubular nanowires. We also discuss the dynamics of the vortex DW propagation gradually increasing the uniaxial anisotropy constant and we found that the average velocity is considerably reduced. Our results show that different anisotropies can be considered in real samples in order to manipulate the domain wall behavior and the magnetization reversal process.  相似文献   

10.
We studied the structure and magnetic properties of porous multilayered Co/Pd films deposited on the templates of anodized Al2O3 with a specific surface morphology that is characterized by a cellular–porous structure with several pores inside each cell. X-ray diffraction analysis and reflectometry are used to study the peculiarities of the formation of phases in deposited films. The effect of morphological features of porous Co/Pd films on their magnetoanisotropic properties and magnetization reversal processes (magnetization reversal mechanisms, domain structure of films, and coercive field H c ) is revealed by SQUID magnetometry and magnetic force microscopy.  相似文献   

11.
The process of magnetization reversal in ferromagnetic Ga(1-x)Mn(x)As epilayers has been systematically investigated using the planar Hall effect (PHE). Interestingly, we have observed a pronounced asymmetry in the PHE hysteresis when the range of the field scan is restricted to fields below the final magnetization transition. The observed behavior indicates that (a) multidomain structures are formed as M undergoes a reorientation, (b) the domain landscape formed in this way remains stable even after the magnetic field is switched off, and (c) the reorientation of magnetization directions corresponding to the transition points in PHE takes place separately within each domain.  相似文献   

12.
The hysteresis loop shift in sub-100 nm ferromagnetic- (FM-)antiferromagnetic (AFM) nanostructures can be either enhanced or reduced with respect to continuous films with the same composition, with varying the AFM layer thickness. An enhancement of the coercivity and a reduction of the blocking temperature are also observed. These effects are mainly ascribed to the physical limitations that the dot sizes impose on the AFM domain size and the concomitant weakening of the pinning strength exerted by the AFM during magnetization reversal of the FM.  相似文献   

13.
Ferroelectric transition has been detected in a ferrimagnetic spinel oxide of CoCr2O4 upon the transition to the conical spin order below 25 K. The direction [110] of the spontaneous polarization is normal to both the magnetization easy axis [001] and to the propagation axis [110] of the transverse spiral component, in accord with the prediction based on the spin-current model. The reversal of the spontaneous magnetization by a small magnetic field (approximately 0.1 T) induces the reversal of the spontaneous polarization, indicating the clamping of the ferromagnetic and ferroelectric domain walls.  相似文献   

14.
We studied the magnetization reversal in ultrathin [Co/Pt]n films (n=1, 2, and 4) using magneto-optical Kerr microscopy. These materials demonstrate unusual asymmetries in the activity of nucleation centers and domain wall motion. It was found that application of very high holding magnetic field prior to magnetization reversal, exceeding some critical value much larger than the apparent saturation field, suppresses the subsequent ‘asymmetric’ nucleation centers, activity. We revealed that the ‘asymmetric’ nucleation centers become active again after subsequent reversal cycles coming from a smaller holding field and studied how the asymmetry returns with the decrease of applied holding field. It was found that in low-coercivity ultrathin Co films, the asymmetry in domain wall velocity decreased sharply with the applied field increase and disappeared when the reversal field is greater than μ0H=1.5 mT.  相似文献   

15.
The distribution of axes of easy magnetization close to a homogeneous distribution is revealed in each half-thickness of a ribbon after annealing it in a helical magnetic field. The transition from magnetic reversal of a ribbon by the displacement of two domain walls formed near a middle plane of a ribbon to magnetic reversal of a ribbon by displacement of two domain walls formed near to the main surfaces of a ribbon is found out during each half-period of a magnetic reversal.  相似文献   

16.
We have studied the magnetization reversal of uniaxial Co(1 0 1 0) films as a function of the applied field orientation by means of magneto-optical Kerr effect microscopy. Hereby, we find that while stable intermediate domain states exist for most field directions, their occurrence is suppressed for field orientations along the easy axis of magnetization. To facilitate this study, we have developed a data extraction methodology that allows for the quantitative analysis and compact display of entire magnetization distribution field-sequences in a single picture. It furthermore allows for the automated data analysis to unambiguously distinguish magnetization rotation processes from field-induced domain formation.  相似文献   

17.
Amorphous FeSiB wires with positive magnetostriction are very perspective soft magnetic materials for many applications, e.g. torque, field or current sensors, pulse generators and highly sensitive magnetometers. The appearance of the Large Barkhausen Effect (LBE) during slow magnetization of FeSiB wires is described by means of the core-shell model assuming a residual radial tensile stresses in the as-cast state. In this work, the LBE during magnetization reversal of Fe77.5Si7.5B15 amorphous wire in the as-cast state was analysed. We have studied the kinetics of the reverse domain in the core region of the wire by means of Sixtus-Tonks method of two small pick-up coils placed in an asymmetric way with respect to the ends of the wire. We estimated the velocity of the reverse domain wall and the core region volume of the wire. It was found that the residual radial tensile stress distribution of the shell region strongly influences the magnetization reversal in the FeSiB wire.  相似文献   

18.
The dependence on nickel oxide thickness in unidirectional and isotropic exchange-coupled NiO/NiFe bilayer films was investigated by magnetic force microscopy to better understand exchange biasing at microscopic length scales. As the NiO thickness increased, the domain structure of unidirectional biased films formed smaller and more complex in-plane domains. By contrast, for the isotropically coupled films, large domains generally formed with increasing NiO thickness including a new cross type domain with out-of-plane magnetization orientation. The density of the cross domain is proportional to exchange biasing field, and the fact that the domain mainly originated from the strongest exchange coupled region was confirmed by imaging in an applied external field during a magnetization cycle.  相似文献   

19.
矩形磁性纳米点动力学反磁化过程的微磁学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用微磁学模拟方法研究了初始态为C形磁结构的矩形CoFe纳米点在方波脉冲场作用下的动力学反磁化过程.研究发现,随着脉冲场强的增强,磁体的反磁化模式发生了改变.当场强较弱时反磁化过程通过畴壁移动-单涡旋的形成和移动来完成;当场强较大时反磁化过程模式转变为畴壁移动-双涡旋的形成与移动;在更强的场强下反磁化过程通过畴壁的移动-多涡旋的形成与湮没来实现.由于反磁化模式随场强的变化而改变,反磁化时间随场强的增大出现振荡变化现象. 关键词: 动力学反磁化过程 反磁化时间 微磁学模拟  相似文献   

20.
The magnetization reversal of epitaxial single-crystal Fe films has been studied by combining domain images and hysteresis loops. The reversal is quantitatively described by combining the coherent rotation model and the domain wall displacement model. The pinning energy exerted on the domain walls and the domain wall angle at the switching fields are obtained by fitting this model to experimental hysteresis loops. The field-dependent pinning energy and the domain wall angle in the reversal process, and the contributions of second-order magneto-optic effect to hysteresis loops, are revealed to be two important features of single-crystal Fe films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号