首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Doubly protonated peptides that undergo an electron transfer reaction without dissociation in a linear ion trap can be subjected to beam-type collisional activation upon transfer from the linear ion trap into an adjacent mass analyzer, as demonstrated here with a hybrid triple quadrupole/linear ion trap system. The activation can be promoted by use of a DC offset difference between the ion trap used for reaction and the ion trap into which the products are injected of 12-16 V, which gives rise to energetic collisions between the transferred ions and the collision/bath gas employed in the linear ion trap used for ion/ion reactions. Such a process can be executed routinely on hybrid linear ion trap/triple quadrupole tandem mass spectrometers and is demonstrated here with several model peptides as well as a few dozen tryptic peptides. Collisional activation of the peptide precursor ions that survive electron transfer frequently provides structural information that is absent from the precursor ions that fragment spontaneously upon electron transfer. The degree to which additional structural information is obtained by collisional activation of the surviving singly charged peptide ions depends upon peptide size. Little or no additional structural information is obtained from small peptides (<8 residues) due to the high electron transfer dissociation (ETD) efficiencies noted for these peptides as well as the extensive sequence information that tends to be forthcoming from ETD of such species. Collisional activation of the surviving electron transfer products provided greatest benefit for peptides of 8-15 residues.  相似文献   

2.
Migration of sulfate groups between hydroxyl groups was identified after collision‐induced dissociation (CID) of sulfated oligosaccharides in an ion trap mass spectrometer in negative ion mode. Analysis of various sulfated oligosaccharides showed that this was a common phenomenon and was particularly prominent in sulfated oligosaccharides also containing sialic acid. It was also shown that the level of migration was increased when the sulfate was positioned on the flexible areas of the oligosaccharides not involved in the pyranose ring, such as the extra‐cyclic C‐6 carbon of hexoses or N‐acetylhexosamines, or on reduced oligosaccharide. This suggested that migration is dependent on the spatial availability of the sulfate in the ion trap during collision. It is proposed that the migration is initiated when the negatively charged ‐SO3 residue attached to the oligosaccharide precursor becomes protonated by a CID‐induced proton transfer. This is supported by the CID fragmentation of precursor ions depleted of acidic protons such as doubly charged [M – 2H]2– ions or the sodiated [M + Na – 2H] ions of oligosaccharides containing one sulfate and one sialic acid in the same molecule. Compared to the CID fragmentation of their monocharged [M – H] ions, no migration was observed in CID of proton depleted precursors. Alternative fragmentation parameters to suppress migration of sulfated oligosaccharides also showed that it was not present when sulfated oligosaccharides were fragmented by HCD (High‐Energy C‐trap Dissociation) in an Orbitrap mass spectrometer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The recent development of miniature ion trap mass spectrometer systems in the last ten years is reviewed in this paper. These instruments adopt different atmospheric pressure interfaces (APIs), which are membrane inlets (MIs), discontinuous atmospheric pressure interface (DAPI) and continuous atmospheric pressure interface (CAPI).  相似文献   

4.
Technological and scientific advances over the past decade have enabled protein identification and characterization strategies to be developed that are based on subjecting intact protein ions and large protein fragments directly to tandem mass spectrometry. These approaches are referred to collectively as 'top down' to contrast them with 'bottom up' approaches whereby protein identification is based on mass spectrometric analysis of peptides derived from proteolytic digestion, usually with trypsin. A key step in enabling top down approaches has been the ability to assign tandem mass spectrometer product ion identities, which can be done either via high resolving power or through product ion charge state manipulation. The ability to determine product ion charge states has permitted studies of the reactions, including dissociation, ion-molecule reactions, ion-electron reactions and ion-ion reactions of high-mass, multiply charged protein ions. Electrospray ionization combined with high magnetic field strength Fourier transform ion cyclotron resonance has proven to be particularly powerful for detailed protein characterization owing to its high mass resolution and mass accuracy and its ability to effect electron capture-induced dissociation. Other types of tandem mass spectrometers are also beginning to find increasing use in top down protein identification/characterization studies. Charge state manipulation via ion-ion reactions in electrodynamic ion traps, for example, enables top down strategies to be considered using instruments with relatively modest mass resolution capabilities. Precursor ion charge state manipulation techniques have also recently been demonstrated to be capable of concentrating and charge-state purifying proteins in the gas phase. Advances in technologies applied to the structural analysis of whole protein ions and in understanding their reactions, such as those described here, are providing new options for the study of complex protein mixtures.  相似文献   

5.
An electron injection system based on an indirectly heated ring-shaped dispenser cathode has been developed and installed in a 7 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This new hardware design allows high-rate electron capture dissociation (ECD) to be carried out by a hollow electron beam coaxial with the ion cyclotron resonance (ICR) trap. Infrared multiphoton dissociation (IRMPD) can also be performed with an on-axis IR-laser beam passing through a hole at the centre of the dispenser cathode. Electron and photon irradiation times of the order of 100 ms are required for efficient ECD and IRMPD, respectively. As ECD and IRMPD generate fragments of different types (mostly c, z and b, y, respectively), complementary structural information that improves the characterization of peptides and proteins by FTICR mass spectrometry can be obtained. The developed technique enables the consecutive or simultaneous use of the ECD and IRMPD methods within a single FTICR experimental sequence and on the same ensemble of trapped ions in multistage tandem (MS/MS/MS or MS(n)) mass spectrometry. Flexible changing between ECD and IRMPD should present advantages for the analysis of protein digests separated by liquid chromatography prior to FTICRMS. Furthermore, ion activation by either electron or laser irradiation prior to, as well as after, dissociation by IRMPD or ECD increases the efficiency of ion fragmentation, including the w-type fragment ion formation, and improves sequencing of peptides with multiple disulfide bridges. The developed instrumental configuration is essential for combined ECD and IRMPD on FTICR mass spectrometers with limited access into the ICR trap.  相似文献   

6.
Quadrupole ion traps are reviewed, emphasizing recent developments, especially the investigation of new geometries, guided by multiple particle simulations such as the ITSIM program. These geometries include linear ion traps (LITs) and the simplified rectilinear ion trap (RIT). Various methods of fabrication are described, including the use of rapid prototyping apparatus (RPA), in which 3D objects are generated through point-by-point laser polymerization. Fabrication in silicon using multilayer semi-conductor fabrication techniques has been used to construct arrays of micro-traps. The performance of instruments containing individual traps as well as arrays of traps of various sizes and geometries is reviewed. Two types of array are differentiated. In the first type, trap arrays constitute fully multiplexed mass spectrometers in which multiple samples are examined using multiple sources, analyzers and detectors, to achieve high throughput analysis. In the second, an array of individual traps acts collectively as a composite trap to increase trapping capacity and performance for a single sample. Much progress has been made in building miniaturized mass spectrometers; a specific example is a 10 kg hand-held tandem mass spectrometer based on the RIT mass analyzer. The performance of this instrument in air and water analysis, using membrane sampling, is described.  相似文献   

7.
报道了两种生物质谱技术ESI-MS和MALDI-MS在鉴定乙酰化修饰蛋白BSA-ac中的应用研究结果. 乙酰化修饰蛋白通过特征碎裂峰m/z 126.1或MS/MS质谱图中相差一个赖氨酸的相邻b或y离子之间170 Da分子量的差异确证赖氨酸乙酰化修饰, 并且后者提供具体修饰位点信息. 研究提示ESI-MS和MALDI-MS两种质谱技术均可用于鉴定实际复杂样品中的乙酰化蛋白, 且在乙酰化蛋白的鉴定中各有其优点.  相似文献   

8.
Electron transfer dissociation (ETD) of proteins is demonstrated in a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer (Qh-FTICRMS). Analyte ions are selected in the mass analyzing quadrupole, accumulated in the hexapole linear ion trap, reacted with fluoranthene reagent anions, and then analyzed via an FTICR mass analyzer. The hexapole trap allows for a broad fragment ion mass range and a high ion storage capacity. Using a 3 T FTICRMS, resolutions of 60 000 were achieved with mass accuracies averaging below 1.4 ppm. The high resolution, high mass accuracy ETD spectra provided by FTICR obviates the need for proton transfer reaction (PTR) charge state reduction of ETD product ions when analyzing proteins or large peptides. This is demonstrated with the ETD of ubiquitin and apomyoglobin yielding sequence coverages of 37 and 20%, respectively. We believe this represents the first reported successful combination of ETD and a FTICRMS.  相似文献   

9.
The discontinuous atmospheric pressure interface (DAPI) has been developed to allow a direct transfer of ions from atmosphere into an ion trap mass spectrometer with minimum pumping capability. Air is introduced into the trap with ions and used as a buffer gas for the ion trap operation. In this study, a method of introducing helium as a second buffer gas was developed for a miniature mass spectrometer using a dual DAPI configuration. The buffer gas effects on the performance of a linear ion trap (LIT) with hyperbolic electrodes were characterized for ion isolation, fragmentation and a mass-selective instability scan. Significant improvement was obtained with helium for resolutions of mass analysis and ion isolation, while moderate advantage was gained with air for collision-induced dissociation. The buffer gas can be switched between air and helium for different steps within a single scan, which allows further optimization of the instrument performance for tandem mass spectrometry.  相似文献   

10.
Extractive electrospray ionization source(EESI)was adapted for ion-ion reaction,which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.  相似文献   

11.
A mass spectrometry-based assay combining the specificity of selected reaction monitoring and the protein ion activation capabilities of electron transfer dissociation was developed and employed for the rapid identification of hemoglobin variants from whole blood without previous proteolytic cleavage. The analysis was performed in a robust ion trap mass spectrometer operating at nominal mass accuracy and resolution. Subtle differences in globin sequences, resulting with mass shifts of about one Da, can be unambiguously identified. These results suggest that mass spectrometry analysis of entire proteins using electron transfer dissociation can be employed on clinical samples in a workflow compatible with diagnostic applications.  相似文献   

12.
The 157 nm photofragmentation of native and derivatized oligosaccharides was studied in a linear ion trap and in a home-built matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometer, and the results were compared with collision-induced dissociation (CID) experiments. Photodissociation produces product ions corresponding to high-energy fragmentation pathways; for cation-derivatized oligosaccharides, it yields strong cross-ring fragment ions and provides better sequence coverage than low- and high-energy CID experiments. On the other hand, for native oligosaccharides, CID yielded somewhat better sequence coverage than photodissociation. The ion trap enables CID hybrid MS3 experiments on the high-energy fragment ions obtained from photodissociation.  相似文献   

13.
Four new 3‐alkyl pyridinium alkaloids, the viscosalines B1 ( 1 a ), B2 ( 1 b ), E1 ( 2 a ), and E2 ( 2 b ), were isolated from the Arctic sponge Haliclona viscosa. The structure elucidation of these isomeric compounds was challenging due to ambiguous fragments that derive during “standard” mass spectrometric fragmentation experiments. The final structure elucidation relied on the use of a combination of synthesis, liquid chromatography, and mass spectrometry. Three different mass spectrometers were used to differentiate between the synthetic structural isomers: a time‐of‐flight (TOF) mass spectrometer and two ion‐trap mass spectrometers with different ion‐transfer technologies (i.e., skimmer versus funnel optics). Although at first none of the spectrometers returned spectra that permitted structure elucidation, all three mass spectrometers provided analysis that successfully differentiated between the isomers after thorough method optimization. The use of in‐source collision‐induced dissociation (CID) with the ion trap and TOF instrument returned the most interesting results. The mode of fragmentation of the viscosalines under different experimental conditions is described herein. After successful optimization of the mass spectrometric method applied, the chromatographic method was improved to distinguish the previously inseparable isomers. Finally, both the liquid chromatography and mass spectrometric methods were applied to the natural products and the results compared to those from the synthetic compounds.  相似文献   

14.
Isolated triply and doubly charged anions of the single-stranded deoxynucleotide 5′-d(AAAA)-3′ were allowed to undergo ion-ion proton transfer reactions with protonated pyridine cations within a quadrupole ion trap mass spectrometer. Sufficiently high ion number densities and spatial overlap of the oppositely charged ion clouds could be achieved to yield readily measurable rates. Three general observations were made: (1) the ion-ion reaction rate constants were estimated to be 10? (7 ? 8) cm3 ion?1 s?1; (2) the ion-ion reaction rates were found to be dependent on the reactant ion number density, which could be controlled by both the reactant ion number and the pseudopotential well depth, and (3) very little fragmentation, if any, was observed, as might normally be expected with highly exothermic proton transfer reactions.  相似文献   

15.
Assigning glycosylation sites of glycoproteins and their microheterogeneity is still a very challenging analytical task despite the rapid advancements in mass spectrometry. It is shown here that glycopeptide ions can be fragmented efficiently using the higher‐energy C‐trap dissociation (HCD) feature of a linear ion trap orbitrap hybrid mass spectrometer (LTQ Orbitrap). An attractive aspect of this dissociation option is the generation of distinct Y1 ions (peptide+GlcNAc), thus allowing unequivocal assignment of N‐glycosylation sites of glycoproteins. The combination of the very informative collision‐induced dissociation spectra acquired in the linear ion trap with the distinct features of HCD offers very useful information aiding in the characterization of the glycosylation sites of glycoproteins. The HCD activation energy needed to obtain optimum Y1 ions was studied in terms of glycan structure and charge state, and size and structure of the peptide backbone. The latter appeared to be primarily dictating the needed HCD energy. The distinct Y1 ion formation in HCD facilitated an easy assignment of such an ion and its subsequent isolation and dissociation through multiple‐stage tandem mass spectrometry. The resulting MS3 spectrum of the Y1 ion facilitates database searching and de novo sequencing thus prompting the subsequent identification of the peptide backbone and associated glycosylation sites. Moreover, fragment ions formed by HCD are detected in the Orbitrap, thus overcoming the 1/3 cut‐off limitation that is commonly associated with ion trap mass spectrometers. As a result, in addition to the Y1 ion, the common glycan oxonium ions are also detected. The high mass accuracy offered by the LTQ Orbitrap mass spectrometer is also an attractive feature that allows a confident assignment of protein glycosylation sites and the microheterogeneity of such sites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Multiply-charged peptide cations comprised of two polypeptide chains (designated A and B) bound via a disulfide linkage have been reacted with SO2-* in an electrodynamic ion trap mass spectrometer. These reactions proceed through both proton transfer (without dissociation) and electron transfer (with and without dissociation). Electron transfer reactions are shown to give rise to cleavage along the peptide backbone, loss of neutral molecules, and cleavage of the cystine bond. Disulfide bond cleavage is the preferred dissociation channel and both Chain A (or B)-S* and Chain A (or B)-SH fragment ions are observed, similar to those observed with electron capture dissociation (ECD) of disulfide-bound peptides. Electron transfer without dissociation produces [M + 2H]+* ions, which appear to be less kinetically stable than the proton transfer [M + H]+ product. When subjected to collision-induced dissociation (CID), the [M + 2H]+* ions fragment to give products that were also observed as dissociation products during the electron transfer reaction. However, not all dissociation channels noted in the electron transfer reaction were observed in the CID of the [M + 2H]+* ions. The charge state of the peptide has a significant effect on both the extent of electron transfer dissociation observed and the variety of dissociation products, with higher charge states giving more of each.  相似文献   

17.
We have developed and implemented a novel mass spectrometry (MS) platform combining the advantages of high mass accuracy and resolving power of Fourier transform ion cyclotron resonance (FTICR) with the economy and speed of multiple ion traps for tandem mass spectrometry. The instruments are integrated using novel algorithms and software and work in concert as one system. Using chromatographic time compression, a single expensive FTICR mass spectrometer can match the throughput of multiple relatively inexpensive ion trap instruments. Liquid chromatography (LC)-mass spectrometry data from the two types of spectrometers are aligned and combined to hybrid datasets, from which peptides are identified using accurate mass from the FTICR data and tandem mass spectra from the ion trap data. In addition, the high resolving power and dynamic range of a 12 tesla FTICR also allows precise label-free quantitation. Using two ion traps in parallel with one LC allows simultaneous MS/MS experiments and optimal application of collision induced dissociation and electrontransfer dissociation throughout the chromatographic separation for increased proteome coverage, characterization of post-translational modifications and/or simultaneous measurement in positive and negative ionization mode. An FTICR-ion trap cluster can achieve similar performance and sample throughput as multiple hybrid ion trap-FTICR instruments, but at a lower cost. We here describe the first such FTICR-ion trap cluster, its performance and the idea of chromatographic compression.  相似文献   

18.
The high resolution, mass range and sensitivity of Fourier transform mass spectrometry (FTMS) suggest that it could be a valuable tool for the quantitative analysis of biomolecules. To determine the applicability of electrospray ionization combined with FTMS to the quantitation of biomolecules in multi-component samples, mixtures of varying compositions and concentrations of cytochrome c, angiotensin II, insulin and chicken egg white lysozyme were examined. The instrument used has an electrospray source with a hexapole trap to accumulate ions for injection into an ion cyclotron resonance mass analyzer. Linear responses for single component samples of angiotensin II and insulin were in the range 0.031-3 microM and those of both cytochrome c and lysozyme were between 0.031 and 1 microM. In examining various mixtures of the proteins with angiotensin II, it was found that the presence of the large molecules suppresses the signal of the smaller molecules. This is suggested to be a result of ion-ion interactions producing selective ion loss from either the hexapole trap or the ion cyclotron resonance mass analyzer trap. More massive, more highly charged ions can collisionally transfer large amounts of translational energy to smaller, less highly charged ions, ejecting the smaller ions from the trap. Mass discrimination effects resulting from the trapping voltage were also examined. It was found that relative signal intensities of ions of different masses depend on trapping voltage for externally produced ions. The effect is most significant for spectra including masses that differ by 30% or more. This suggests that for quantitation all samples and standards be run at a constant trapping potential.  相似文献   

19.
We explore the feasibility of conducting electron ionization (EI) in a radio-frequency (rf) ion source trap for mass spectrometry applications. Electrons are radially injected into a compact linear ion trap in the presence of a magnetic field used essentially to lengthen the path of the electrons in the trap. The device can either be used as a stand-alone mass spectrometer or can be coupled to a mass analyzer. The applied parallel magnetic field and the oscillating rf electric field produced by the trap give rise to a set of coupled Mathieu equations of motion. Via numerical simulations, electron trajectories are studied under varying intensities of the magnetic field in order to determine the conditions that enhance ion production. Likewise, the dynamic behavior of the ions are investigated in the proposed EI source trap and the fast Fourier transform FFT formalism is used to obtain the frequency spectrum from the numerical simulations to study the motional frequencies of the ions which include combinations of the low-frequency secular and the high-frequency micromotion with magnetron and cyclotron frequencies. The dependence of these motional frequencies on the trapping conditions is examined and particularly, the limits of applying a radial magnetic field to the EI ion trap are characterized.
Figure
?  相似文献   

20.
A methodology to determine the linkage position of oligosaccharides is presented. In order to illustrate this technique, several oligosaccharides and disaccharides were ionized by electrospray and analyzed in a Paul trap mass spectrometer. Multiple stage tandem mass spectrometry experiments were used to determine linkage and structural information for the following four cobalt coordinated and singly charged ([M+Co?H]+) pentasaccharides: Lacto-N-fucopentaose I, II, III, and V. In order to differentiate between linkage positions, multiple low energy collision induced experiments with mass selected C type ions have been carried out in an ion trap mass spectrometer. Because of the coordination with cobalt, which directs the dissociation pathways, these C type ions undergo specific fragmentation reactions upon low energy collision induced dissociation. These dissociation pathways are unambiguously dependent on their linkage position, thus allowing differentiation between 1→2, 1→3, 1→4, and 1→6 linkage positions throughout the oligomers. Studies on various linked disaccharides and N-acetyl-disaccharides, which are smaller constituents of the pentasaccharides, were used to verify and confirm the results obtained from the pentasaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号