首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel ligand (H2L), diethylenetriamine-N,N′,N′′-triacetylisoniazide N,N′′-bisacetic acid, and its four non-ion transition metal complexes, ML · nH2O (M = Mn, n = 4; M = Co, Ni, n = 2; M = Cu, n = 1), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H-NMR, FAB-MS, TG-DTA analysis and IR spectrum. In addition, relaxivity (R1) of the complexes was determined, the relaxivity of MnL, CoL, NiL, CuL as well as Gd(DTPA)2− used as a control are 6.94, 2.79, 2.52, 1.59 and 4.34 l mmol−1 s−1, respectively. The relaxivity of MnL is larger than that of Gd(DTPA)2−. The results show that the complex of MnL may be a potential MRI contrast agent.  相似文献   

2.
    
The tripodal ligand N,N′,N″-tri(benzimidazolyl)-methane has been used to synthesize nickel(II) complexes along with an exogeneous ligand, X(X = Cr,NO 3 ,ClO 4 , HCOO, OAc and CNS). Electronic absorption spectra reveal that the present nickel(II) complexes have six coordinate tetragonal geometries. The value of Racah parameter(B), crystal field splitting parameter (Dq) and term,β0 (which is a measure of covalency) have been calculated.1HNMR spectroscopy reveals a dominantσ-delocalization pattern in these complexes.  相似文献   

3.
Mixed ligand complexes of Cu(II) with 8-hydroxy-quinolinate (Hy) as one ligand and acetylacetonate (ac.ac) or salicylaldehydate (Sal) as the second ligand have been prepared in reaction mixtures of Cu(Hy)2 + Cu(ac.ac)2 and Cu(Hy)2 + Cu(Sal)2 in chloroform. Ligand hyperfine structures and the minimum ESR linewidth associated withm = − 3/2 hyperfine component have been used to detect and identify the mixed ligand complexes. The ligands in these complexes coordinate through O or N. The constantsK associated with the ligand exchange equilibriums are ~ 2 at −20°C and are close to the value expected from the empirical relation obtained in an earlier work from a study of Cu(II) complexes in which S also participates in the coordination.  相似文献   

4.
Tris-chelate complex [Ru(Pap)(RAaiR′)2](ClO4)2 (I, II, III/a, b, c) (where RAaiR′ = 1-alkyl-(2-arylazo)imidazole, R = H, Me, Cl (a, b, c); R′ = Me, Et, CH2Ph (I, II, III), and Pap = phenylazopyridine) was prepared by silver assisted synthetic route. IR spectra of the complexes support Ru-azo nitrogen π-bonding interaction. 1H NMR spectra suggest that there are two types of streochemical orientation of RAaiR′ around ruthenium(II). Cyclic voltammetry of the complexes shows one metal oxidation Ru(II)/Ru(III) at 1.4–1.5 V and three successive ligand reduction couples at the negative side of the reference potential in the range from −0.5 to −0.56, −0.7 to −0.8, and from −1.25 to −1.40 V, respectively. The text was submitted by the author in English.  相似文献   

5.
Reaction of [Au(C6F5)(tht)2Cl](OTf) with RaaiR′ in CH2Cl2 medium leads to [Au(C6F5)(RaaiR′)Cl](OTf) [RaaiR′ = p-R–C6H4–N=N–C3H2–NN-1-R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The maximum molecular peak of [Au(C6F5)(MeaaiMe)Cl] is observed at m/z 599.51 (100 %) in the FAB mass spectrum. Ir spectra of the complexes show –C=N– and –N=N– stretching near at 1590 and 1370 cm−1 and near at 1510, 955, 800 cm−1 due to the presence of pentafluorophenyl ring. The 1H-NMR spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph shows AB type quartets. 13C-NMR spectrum of complexes confirm the molecular skeleton. In the 1H-1H-COSY spectrum as well as contour peaks in the 1H-13C HMQC spectrum for the present complexes, assign the solution structure and stereoretentive conformation. The electrochemistry gives the ligand reduction peaks.  相似文献   

6.
The title complexes, K[SmIII(Edta)(H2O)3] · 2H2O(I)(H4Edta = ethylenediamine-N,N,N′,N′-tetraacetic acid) and K2[SmIII(Pdta)(H2O)2]2 · 4.5H2O (II) (H4Pdta = propylenediamine-N,N,N′,N′-tetraacetic acid), were prepared and their compositions and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques, respectively. Complex I has a mononuclear structure, and the Sm3+ ion is nine-coordinated by an Edta ligand and three water molecules, yielding a pseudo-monocapped square antiprismatic conformation, and the complex crystallizes in the orthorhombic crystal system with space group Fdd2. The crystal data are as follows: a = 19.84(5), b = 35.58(9), c = 12.15(3) ?, V = 8580(38) ?3, Z = 16, ρ c = 1.925 g/cm3, μ = 3.010 mm−1, F(000) = 4976, R = 0.0252, and wR = 0.0560 for 3510 observed reflections with I ≥ 2σ(I). Complex II has a binuclear structure and the Sm3+ ion is ten-coordinated by a Pdta ligand, two oxygen atoms from a carboxylic group of adjacent Pdta ligand and two water molecules, yielding a distorted bicapped square antiprismatic prism. The complex crystallizes in the triclinic crystal system with space group P $ \bar 1 $ \bar 1 . The crystal data are as follows: a = 8.9523(15), b = 10.7106(15), c = 11.6900(19) ?, α = 80.613(5)°, β = 80.397(5)°, γ = 76.530(4)°, V = 1065.7(3) ?3, Z = 1, ρc = 1.970 g/cm3, μ = 2.532 mm−1, F(000) = 1620, R = 0.0332 and wR = 0.0924 for 5390 observed reflections with I ≥ 2σ(I).  相似文献   

7.
Galactose oxidase (GOase) is a fungal enzyme which is unusual among metalloenzymes in appearing to catalyse the two electron oxidation of primary alcohols to aldehydes and H2O2. The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two histidine imidazoles, a tyrosinate, and either H2O (pH 7.0) or acetate (from buffer,pH 4-5) in the equatorial sites and a tyrosinate ligand weakly bound in the axial position. This paper summarizes the results of our studies on the structure, spectral and redox properties of certain novel models for the active site of the inactive form of GOase. The monophenolato Cu(II) complexes of the type [Cu(L1)X][H(L1) = 2-(bis(pyrid-2-ylmethyl)aminomethyl)-4-nitrophenol and X = Cl 1, NCS 2, CH3COO 3, ClO4 4] reveal a distorted square pyramidal geometry around Cu(II) with an unusual axial coordination of phenolate moiety. The coordination geometry of 3 is reminiscent of the active site of GOase with an axial phenolate and equatorial CH3COO ligands. All the present complexes exhibit several electronic and EPR spectral features which are also similar to the enzyme. Further, to establish the structural and spectroscopic consequences of the coordination of two tyrosinates in GOase enzyme, we studied the monomeric copper(II) complexes containing two phenolates and imidazole/pyridine donors as closer structural models for GOase. N,N-dimethylethylenediamine and N,N’-dimethylethylenediamine have been used as starting materials to obtain a variety of 2,4-disubstituted phenolate ligands. The X-ray crystal structures of the complexes [Cu(L5)(py)], (8) [H2(L5) = N,N-dimethyl-N’,N’-bis(2-hydroxy-4-nitrobenzyl) ethylenediamine, py = pyridine] and [Cu(L8)(H2O)] (11), [H2(L8) = N,N’-dimethyl-N,N’-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine] reveal distorted square pyramidal geometries around Cu(II) with the axial tertiary amine nitrogen and water coordination respectively. Interestingly, for the latter complex there are two different molecules present in the same unit cell containing the methyl groups of the ethylenediamine fragmentcis to each other in one molecule andtrans to each other in the other. The ligand field and EPR spectra of the model complexes reveal square-based geometries even in solution. The electrochemical and chemical means of generating novel radical species of the model complexes, analogous to the active form of the enzyme is presently under investigation.  相似文献   

8.
New bis-benzimidazole based diamide ligands N, N′-bis(2-methyl benzimidazolyl)-benzene-1,3-dicarboxamide [GBBA] and N-Octyl-N, N′-bis(2-methyl benzimidazolyl)-benzene- 1,3-dicarboxamide [O-GBBA] have been synthesized and utilized to prepare Cu(II) complexes of general composition [Cu(GBBA)X 2] · nH2O and [Cu(O-GBBA)X2] · n H2O, where X is an exogenous anionic ligand (X = Cl, NO3, SCN). The oxidation of electron deficient olefins has been investigated using [Cu(O-GBBA)X2] · nH2O as catalyst and TBHP as an alternate source of oxygen. The respective ketonic products have been isolated and characterized by 1H-NMR. The complex [Cu(GBBA)(NO3)2] · 4H2O has been characterized structurally. It crystallizes in a monoclinic space group C2/c. Low temperature EPR spectra have been obtained for the complexes that shows gII > gI > 2.0024, indicating a tetragonal geometry in the solution state. The complexes display a quasi reversible redox wave due to the Cu(II)/Cu(I) reduction process. The E1/2 values shift anodically as NO3 < SCN < Cl.  相似文献   

9.
N,N′-bis(salicylidene)-1,3-propanediamine (LH2), N,N′-bis(salicylidene)-2,2′-dimethyl-1,3-propanediamine (LDMH2), N,N′-bis(salicylidene)-2-hydroxy-1,3-propanediamine (LOH3), N,N′-bis(2-hydroxyacetophenylidene)-1,3-propanediamine (LACH2) and N,N′-bis(2-hydroxyacetophenone)-2,2′-dimethyl-1,3-propanediamine (LACDMH2) were synthesized and reduced to their phenol-amine form in alcoholic media using NaBH4 (LHH2, LDMHH2, LOHHH2, LACHH2 and LACDMHH2). Heterodinuclear complexes were synthesized using Ni(II), Zn(II) and Cd(II) salts, according to the template method in DMF media. The complex structures were analyzed using elemental analysis, IR spectroscopy, and thermogravimetry. Suitable crystals of only one complex were obtained and its structure determined using X-ray diffraction, NiLACH·CdBr2·DMF2, space group orthorhombic, Pbca, a=20.249, b=14.881, c=20.565 ? and Z=8. The heterodinuclear complexes were seen to be of [Ni·ligand·MX2·DMF2] structure (ligand=LH2−, LDMH2−, LOHH2−, LACH2−, LACDMH2−, M=ZnII, CdII, X=Br, I). Thermogravimetric analysis showed irreversible bond breakage of the coordinatively bonded DMF molecules followed by decomposition at this temperature.  相似文献   

10.
A new symmetrical vicinal dioxime, N,N′-bis-{4-[[(2-hydroxyphenyl)methylene]hydrazinecarbonyl]phenyl}diaminoglyoxime (LH4), was prepared by reacting anti-dichloroglyoxime with salicylaldehyde 4-aminobenzoylhydrazone. The reaction of ligand with Ni2+ salts gave mono-and homopentanuclear complexes, [Ni(LH3)2] and [Ni5(LH)2X2]. Furthermore, heteropentanuclear complexes of dioxime ligand, [Cu4Ni(LH)2X4], were prepared by the reaction of [Ni(LH3)2)] with Cu2+ salt and a monodentate ligand (X = SCN, CN, or N 3 ). The structures of both the new symmetrical vicinal dioxime and its complexes were identified by elemental analyses, IR, 1H NMR, UV-VIS spectra, and magnetic susceptibility. The elemental analyses and spectral data indicate that the hydrazone side of ligand acts as a O,N,O′ tridentate and the fourth position is occupied with monodentate anion such as SCN, CN, N 3 .  相似文献   

11.
The title complexes, K2[EuIII(dtpa)(H2O)]·5H2O (H5dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), Na2[TbIII(Httha)]·6H2O (H6ttha = triethylenetetramine-N,N,N′,N′,N″,N″-hexaacetic acid), were prepared, and their compositions and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. The crystal of K2[EuIII(dtpa)(H2O)]·5H2O belongs to triclinic crystal system and $ P\bar 1 $ P\bar 1 space group. The crystal data are as follows: a = 8.3540(17), b = 10.147(2), c = 15.059(3) α = 84.63(3)?, β = 82.02(3)°, γ = 83.96(3)°, V = 1253.1(4)?3, Z = 2, R = 0.0325 and wR = 0.1013 for 4407 observed reflections with I ≥ 2σ(I). The [EuIII(dtpa)(H2O)]2− has a nine-coordinate pseudo-monocapped square antiprismatic structure, in which the nine coordinate atoms, three N and six O are from one dtpa ligand and one water molecule. The crystal of the Na2[TbIII(Httha)]·6H2O belongs to monoclinic system and P21/c space group. The crystal data are as follows: a = 10.3976(10), b = 12.7908(13), c = 23.199(2) ? = 90.914(2)°, V = 3084.9(5)?3, Z = 4, R = 0.0309 and wR = 0.0704 for 5429 observed reflections with I ≥ 2σ(I). In the [TbIII(Httha)]2−, the Tb3+ ion is nine-coordinated yielding a pseudo-monocapped square antiprismatic conformation, in which the ttha ligand coordinates to the central Tb3+ ion with four N atoms and five O atoms. There is a free non-coordinate carboxyl group (−CH2COOH) that can be modified by some biological molecules having target function.  相似文献   

12.
Binary and ternary complexes of copper(II) involving N,N,N′,N′-tetramethylethylene-diamine (Me4en) and various biologically relevant ligands containing different functional groups are investigated. The ligands (L) used are dicarboxylic acids, amino acids, peptides and DNA unit constituents. The ternary complexes of amino acids, dicarboxylic acids or peptides are formed by simultaneous reactions. The results showed the formation of Cu(Me4en)(L) complexes with amino acids and dicarboxylic acids. The effect of chelate ring size of the dicarboxylic acid complexes on their stability constants was examined. Peptides form both Cu(Me4en)(L) complexes and the corresponding deprotonated amide species Cu(Me4en)(LH−1). The ternary complexes of copper(II) with (Me4en) and DNA are formed in a stepwise process, whereby binding of copper(II) to (Me4en) is followed by ligation of the DNA components. DNA constituents form both 1:1 and 1:2 complexes with Cu(Me4en)2+. The concentration distribution of the complexes in solution was evaluated. [Cu(Me4en)(CBDCA)] and [Cu(Me4en)(malonate)] are isolated and characterized by elemental analysis and infrared measurements.  相似文献   

13.
One new metal – organic coordination framework formulated as [{Cu(4,4′-bipy)(CH3COO)2}·3H2O]n (1) (where 4,4′-bipy=4,4′-bipyridine) has been hydrothermally synthesised and characterised by elemental analysis, IR and electronic spectroscopy, variable temperature magnetic moment measurement and single crystal X-ray diffraction study. Single crystal X-ray analysis reveals that 1 is one dimensional polymeric compound in which acetate ligand shows both mono- and bidentate bonding mode, and 4,4′-bipy acts as bridging ligand which supports the formation of infinite chains. The global feature of the χ M T vs. T curve in 1 is characteristic of moderate antiferromagnetic interaction and the best fit parameters from 300 down to 2 K are found as J = −78.7 cm−1.  相似文献   

14.
Three macrocyclic ligands and their complexes with copper(II) salts (with anions Cl, NO 3 , and NCS) were prepared and investigated using a combination of microanalytical analysis, melting point, molar conductance measurement, magnetic susceptibility measurement, and electronic, IR and ESR spectral studies. Ligands L1, L2, and L3 having N4, N4O2, and N4S2 core, respectively, and all the donor atoms of these ligands are bonded with Cu, which is confirmed by a seven-line pattern observed at half-field in the frozen (H2O: MeOH = 10: 1 at pH 10) solution ESR spectrum. The polycrystalline ESR data (g = 2.20–2.27, g = 2.01–2.05, and A = 120–270) of all the complexes together with the high asymmetry geometry suggest that all complexes appear to be near the static distortion (CuN4O2 and CuN4S2 chromophore geometry). The electronic spectra of the complexes involve two bands at the same intensity corresponding to a cis-distorted octahedral geometry. A common structural feature of both ligand L2 and ligand L3 is that two different donor atoms at five-membered heterocyclic aromatic ring due to this N4O2 and N4S2 chromophore form stable six-membered chelate rings with metals via these two, Cu-O and Cu-S, new interactions comparatively to the first macrocyclic ligand, which has four-membered N,N′-chelate rings. The cyclic voltammetric studies point to a two-step electron transfer indicating the reduction of the two copper atoms to copper(I), i.e., Cu(III)Cu(II) ⇄ Cu(II)Cu(I) ⇄ Cu(I)Cu(0). The molar conductance for the complexes corresponds to 1: 2 and is nonelectrolyte in nature. The magnetic moment (μeff) of the complexes lie in the range between 1.80–1.96 μB. Finally, these complexes were screened for their antimicrobial activity against Aspergillus-niger of fungal strains. The text was submitted by the authors in English.  相似文献   

15.
The Na[SmIII(edta)(H2O)3] · 5H2O (H4edta = ethylenediamine-N,N,N′,N′-tetraacetic acid) and {[SmIII(Hpdta)(H2O)] · 2H2O} n (H4pdta = propylenediamine-N,N,N′,N′-tetraacetic acid) complexes were prepared with heat-refluxing and acidity-adjusting methods, respectively. And their composition and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. The Na[SmIII(edta)(H2O)3] · 5H2O complex shapes a mononuclear structure, and crystallizes in the orthorhombic crystal system with space group Fdd2. The central SmIII ion is nine-coordinated by one hexadentate edta ligand and three water molecules. The crystal data are as follows: a = 19.139(10) ?, b = 35.00(2) ?, c = 11.928(10) ?, V = 7989(9) ?3, Z = 16, D c = 2.014 g/cm3, μ = 3.046 mm−1, F(000) = 4848, R = 0.0439, and wR = 0.0941 for 3434 observed reflections with I ≥ 2σ(I). The SmN2O7 part in [SmIII(edta)(H2O)3] complex anion forms a pseudo-monocapped square antiprismatic polyhedron. The {[SmIII(Hpdta)(H2O)] · 2H2O} n complex is prepared with protonated pdta ligand firstly, which forms one dimensional unlimited ladderlike eight-coordinated structure, and crystallizes in the monoclinic crystal system with space group P21/n. The central SmIII ion, in one construction unit, is coordinated by two nitrogen atoms from one hexadentate pdta ligand and six oxygens from the same pdta ligand, one water molecule and one carboxylic group of neighbour pdta ligand, respectively. The crystal data are as follows: a = 12.720(3) ?, b = 9.3800(19) ?, c = 14.420(3) ?, β = 96.11(3)°, V = 1710.7(6) ?3, Z = 2, D c = 1.971 g/cm3, μ = 3.492 mm−1, F(000) = 1004, R = 0.0225 and wR = 0.0607 for 3182 observed reflections with I ≥ 2σ(I). Otherwise, each part of SmN2O6 in {[SmIII(Hpdta)(H2O)] · 2H2O} complex segment adopts a pseudo-square antiprismatic polyhedron.  相似文献   

16.
One novel copper(II) complex [Cu(L)(4,4′-bipy)](ClO4) (1), (where L: tridentate Schiff base derived from salicylaldehyde and L-serine) has been synthesised and characterised by spectroscopic and electrochemical studies. The single-crystal structure of the complex was determined. The crystal structure features the presence of [Cu(L)(4,4′-bipy)]+ cations and ClO4 anions aggregated by hydrogen bonding. Here, 4,4′-bipyridine functions as a monodentate ligand, which appears to be an unusual phenomenon.  相似文献   

17.
The (NH4)3[YbIII(ttha)]·5H2O (I) (H6ttha = triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetic acid) and (NH4)[YbIII(pdta)(H2O)2]·5H2O (II) (H4pdta = propylenediamine-N,N,N′,N′-tetraacetic acid) complexes are synthesized by heat-refluxing and acidity-adjusting methods, and their structures are determined by single crystal X-ray diffraction techniques. These two complexes are all mononuclear structures. The complex I crystallizes in ttha monoclinic crystal system with the P21/c space group. The central YbIII ion is nine-coordinated only by one the ligand, and one non-coordinate carboxyl group is left. The crystal data are as follows: a = 10.321(4) ?, b = 12.744(5) ?, c = 23.203(9) ?, β = 91.082(6)°, V = 3051(2) ?3, Z = 4, D c = 1.754 g/cm3, μ = 3.150 mm−1, F(000) = 1636, R = 0.0357, and wR = 0.0672 for 6203 observed reflections with I ≥ 2σ(I). The YbN4O5 part in the [YbIII(ttha)]3− complex anion forms a pseudo-monocapped square antiprismatic polyhedron. The complex II is coordinated with one pdta ligand and two water molecules, which form an eight-coordinate structure, and crystallizes in the triclinic crystal system with the P[`1]P\bar 1 space group. The YbN2O6 part in the [YbIII(pdta)(H2O)2] complex anion makes a pseudo-square antiprismatic polyhedron. The crystal data are as follows: a = 9.8923(9)?, b = 10.9627(10) ?, c = 12.2618(11) ?, α = 67.284(5)°, β = 70.956(6)°, γ = 68.741(5)°, V = 1115.97(18) ?3, Z = 2, D c = 1.843 g/cm3, μ = 4.264 mm−1, F(000) = 618, R = 0.0177, and wR = 0.0409 for 4036 observed reflections with I ≥ 2σ(I).  相似文献   

18.
Two novel ethylenediaminium salt of europium complexes with aminopolycarboxylic acid ligands, (EnH2)3[EuIII(Ttha)]2 · 11H2O (I) (En is ethylenediamine, H6Ttha is triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetic acid) and (EnH2)[EuIII(Egta)(H2O)]2 · 6H2O (II) (H4Egta is ethyleneglycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid) complexes were synthesized, and their crystal structures were determined by single-crystal X-ray diffraction techniques. Both of the two complexes adopt nine-coordinate structures with the pseudo-monocapped square antiprism and crystallize in the monoclinic crystal system with the P21/n space group. The crystal data for complex I are as follows: a = 17.8262(8), b = 19.3137(5), c = 20.6233(8) ?, β = 111.301(2)°, V = 6615.3(4) ?3, Z = 8, ρ c = 1.677 mg/m3, μ = 1.981 mm−1, F(000) = 3432, R = 0.0308, and wR = 0.0737 for 43622 observed reflections with I ≥ 2σ(I). The crystal data for complex II are as follows: a = 12.952(3), b = 12.618(2), c = 14.809(3) ?, β = 105.695(2)°, V = 2330.0(8) ?3, Z = 4, ρ c = 1.800 mg/m3, μ = 2.765 mm−1, F(000) = 1276, R = 0.0297, and wR = 0.0638 for 18416 observed reflections with I ≥ 2σ(I). One remarkable feature of the two complexes is that the protonated [EnH22+] cations conjugating to [EuIII(Ttha)]26− and [EuIII(Egta)(H2O)]22− complex anions are reviewed, respectively, which open the path for the EuIII complexes conjugating with other various biomolecules.  相似文献   

19.
Complexes [Pd(bt)(4,4′-bpy)OOCCH3], [Pd(bt)NO3]2(m-4,4′-bpy), [Pd(bt)(m-4,4′-bpy)]4(NO3)4 (bt is deprotonated form of 2-phenylbenzothiazole, bpy is 4,4′-bipyridyl) are prepared and characterized by 1H NMR, electron absorption and emission spectroscopy, as well as by voltammetry. The upfield shift of the signal of proton in the ortho-position to the donor carbon atom of the cyclopalladated ligand in the complexes [(Δδ = −(1.1–1.5) ppm] is assigned to the anisotropic effect of the ring current of the pyridine rings of the 4,4′-bipyridyl moiety, which are orthogonal to the coordination plane. Characteristic longwave absorption bands λ = (387±4) nm and the low-temperature phosphorescence bands λ = (512±3) nm in the complexes are assigned to the chromophore {Pd(bt)} metal complex fragment. The reduction waves in the complexes [E 1/2 = −(1.54±0.04) and E p = −(1.83±0.03) V] are assigned to the ligand-centered processes of the successive electron transfer to the π* orbitals localized predominantly on the coordinated pyridine components of the 4,4′-bipyridyl moiety.  相似文献   

20.
pH potentiometric and spectrophotometric investigations on the complex formation equilibria of CuII with iminodiacetate (ida2−) and heterocyclic N-bases, viz. imidazole and benzimidazole (B), in aqueous solution in binary and ternary systems using different molar ratios of the reactants indicated the formation of complexes of the types, Cu(ida), Cu(ida)(OH), (ida)Cu(OH)Cu(ida), Cu(B)2+, Cu(H-1B)+, Cu(ida)(H−1B), (ida)Cu(B)Cu(ida) and (ida)Cu(H−1B)Cu(ida). Formation constants of the complexes at 25 ±1° at a fixed ionic strength,I = 0.1 mol dm−3 (NaNO3) in aqueous solution were evaluated and the complex formation equilibria were elucidated with the aid of speciation curves. Departure of the experimental values of the reproportionation constants(ΔlogK cu) of ternary Cu(ida)(H−1B) complexes from the statistically expected values, despite their formation in appreciable amounts at equilibrium, were assigned tofac(f)-mer(m) equilibria of the ida2− ligand coordinated to CuII, as the N-heterocyclic donors, (H−1B), coordinatetrans- to the N-(ida2−) atom in the binary Cu(ida) f complex to form the ternary Cu(ida) m (H−1B) complexes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号