首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss the propagation of heat along a homogeneous rod of length A under the influence of a nonlinear heat source and impulsive effects at fixed times. This problem is described by an initial-boundary value problem for a nonlinear parabolic partial differential equation subjected to impulsive effects at fixed times. Using Green's function, we convert the problem into a nonlinear integral equation. Sufficient conditions are provided that enable the application of fixed point theorems to prove existence and uniqueness of solutions.  相似文献   

2.
刘芳  施卫平 《应用数学和力学》2015,36(11):1158-1166
对具有非线性源项和非线性扩散项的热传导方程建立格子Boltzmann求解模型.在演化方程中增加了两个关于源项分布函数的微分算子,对演化方程实施Chapman-Enskog展开.通过对演化方程的进一步改进,恢复出具有高阶截断误差的宏观方程.对不同参数选取下的非线性热传导方程进行了数值模拟,数值解与精确解吻合得很好.该模型也可以用于同类型的其他偏微分方程的数值计算中.  相似文献   

3.
《偏微分方程通讯》2013,38(1-2):409-438
Abstract

We study the asymptotic behavior of solutions of the Cauchy problem for a functional partial differential equation with a small parameter as the parameter tends to zero. We establish a convergence theorem in which the limit problem is identified with the Cauchy problem for a nonlinear parabolic partial differential equation. We also present comparison and existence results for the Cauchy problem for the functional partial differential equation and the limit problem.  相似文献   

4.
The nonlinear partial differential equation in the title is typified mathematically as a viscous Hamilton–Jacobi equation. It arises in the study of the growth of surfaces, and in that context is known as the generalized deterministic KPZ equation. Considering the Cauchy problem with initial data that are merely supposed to be bounded and continuous, results on the temporal decay and large-time behaviour of solutions are presented. Corresponding results for the heat equation serve as benchmarks.  相似文献   

5.
In this article we present a unified approach to study the asymptotic behavior and the decay rate to a steady state of bounded weak solutions of nonlinear, gradient-like evolution equations of mixed first and second order. The proof of convergence is based on the Lojasiewicz-Simon inequality, the construction of an appropriate Lyapunov functional, and some differential inequalities. Applications are given to nonautonomous semilinear wave and heat equations with dissipative, dynamical boundary conditions, a nonlinear hyperbolic-parabolic partial differential equation, a damped wave equation and some coupled system.  相似文献   

6.
We construct and study exact solutions to a nonlinear second order parabolic equation which is usually called the “nonlinear heat equation” or “nonlinear filtration equation” in the Russian literature and the “porous medium equation” in other countries. Under examination is the special class of solutions having the form of a heat wave that propagates through cold (zero) background with finite velocity. The equation degenerates on the boundary of a heat wave (called the heat front) and its order decreases. The construction of these solutions by passing to an overdetermined system and analyzing its solvability reduces to integration of nonlinear ordinary differential equations of the second order with an initial condition such that the equations are not solvable with respect to the higher derivative. Some admissible families of heat fronts and the corresponding exact solutions to the problems in question are obtained. A detailed study of the global properties of solutions is carried out by the methods of the qualitative theory of differential equations and power geometry which are adapted for degenerate equations. The results are interpreted from the point of view of the behavior and properties of heat waves with a logarithmic front.  相似文献   

7.
This paper applies the variational iteration method (VIM) and semi-inverse variational principle to obtain solutions of linear and nonlinear partial differential equations. The nonlinear model is considered from gas dynamics, fluid dynamics and Burgers equation. The linear model is the heat transfer (diffusion) equation. Results show that variational iteration method is a powerful mathematical tool for solving linear and nonlinear partial differential equations, and therefore, can be widely applied to engineering problems.  相似文献   

8.
1 引  言三维热传导型半导体器件瞬态问题的数学模型由四个非线性偏微分方程描述[1 ,2 ] ,记 Ω为 Ω=[0 ,1 ] 3的边界 ,三维问题-Δψ =α( p -e+ N( x) ) ,   ( x,t)∈Ω× [0 ,T] ,( 1 .1 ) e t= . ( De( x) e-μe( x) e ψ) -R( e,p,T) ,  ( x,t)∈Ω× ( 0 ,T] ,( 1 .2 ) p t= . ( Dp( x) p +μp( x) p ψ) -R( e,p,T) ,  ( x,t)∈Ω× ( 0 ,T] ,( 1 .3 )ρ( x) T t-ΔT =[( Dp( x) p +μp( x) p ψ) -( De( x) e-μe( x) e ψ) ] . ψ,       ( x,t)∈Ω× ( 0 ,T] . ( 1 .4 )ψ( x,t) =e( x,t) =p( …  相似文献   

9.
Strongly elliptic systems of nonlinear partial differential equations are considered in the case when the derivatives of the solutions occuring in the nonlinear terms have the same order as those in the linear principal part. The existence of periodic solutions for such systems is investigated. It is shown that this problem can be reduced to the study of algebraic bifurcation equations, whose small solutions correspond to the classical solutions of the given problem. A discussion of the bifurcation equations will be given in a forthcoming paper.  相似文献   

10.
The Abreu equation is a fully nonlinear 4th order partial differential equation that arises from the study of the extremal metrics on toric manifolds. We study the Dirichlet problem of the Abreu equation with degenerated boundary conditions. The solutions provide the Kähler metrics of constant scalar curvature on the complex torus.  相似文献   

11.
In this article, the sub‐equation method is presented for finding the exact solutions of a nonlinear fractional partial differential equations. For this, the fractional complex transformation method has been used to convert fractional‐order partial differential equation to ordinary differential equation. The fractional derivatives are described in Jumarie's the modified Riemann–Liouville sense. We apply to this method for the nonlinear time fractional differential equations. With the aid of symbolic computation, a variety of exact solutions for them are obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
We propose a constructive method for the construction of exact solutions of nonlinear partial differential equations. The method is based on the investigation of a fixed nonlinear partial differential equation (system of partial differential equations) together with an additional condition in the form of a linear ordinary differential equation of higher order. By using this method, we obtain new solutions for nonlinear generalizations of the Fisher equation and for some nonlinear evolution systems that describe real processes in physics, biology, and chemistry. To the blessed memory of V. I. Fushchich Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 6, pp. 814–827, June, 1997.  相似文献   

13.
This paper is concerned with a system of nonlinear partial differential equations, in short, the coupled Cahn-Hilliard equations, which consists of a fourth order quasilinear parabolic equation and a second order quasilinear parabolic equation. This system was recently derived by Penrose and Fife and also by Alt and Pawlow to describe the non-isothermal phase separation of a two-component system. The global existence and uniqueness of classical solutions is proved. The results about the asymptotic behavior, as time goes to infinity, of solution and about the existence and multiplicity of solutions to the corresponding stationary problem, which is a nonlinear boundary value problem involving nonlocal term and constraints, are also obtained.  相似文献   

14.
Analytical solutions for the Cahn-Hilliard initial value problem are obtained through an application of the homotopy analysis method. While there exist numerical results in the literature for the Cahn-Hilliard equation, a nonlinear partial differential equation, the present results are completely analytical. In order to obtain accurate approximate analytical solutions, we consider multiple auxiliary linear operators, in order to find the best operator which permits accuracy after relatively few terms are calculated. We also select the convergence control parameter optimally, through the construction of an optimal control problem for the minimization of the accumulated L 2-norm of the residual errors. In this way, we obtain optimal homotopy analysis solutions for this complicated nonlinear initial value problem. A variety of initial conditions are selected, in order to fully demonstrate the range of solutions possible.  相似文献   

15.
Approximation theorems, analogous to results known for linear elliptic equations, are obtained for solutions of the heat equation. Via the Cole-Hopf transformation, this gives rise to approximation theorems for one of the simplest examples of a nonlinear partial differential equation, Burgers’ equation.  相似文献   

16.
Linear and nonlinear elliptic complex partial differential equations of higher‐order are considered under Schwarz conditions in the upper‐half plane. Firstly, using the integral representations for the solutions of the inhomogeneous polyanalytic equation with Schwarz conditions, a class of integral operators is introduced together with some of their properties. Then, these operators are used to transform the problem for linear equations into singular integral equations. In the case of nonlinear equations such a transformation yields a system of integro‐differential equations. Existence of the solutions of the relevant boundary value problems for linear and nonlinear equations are discussed via Fredholm theory and fixed point theorems, respectively.  相似文献   

17.
This paper deals with the long-time behaviour of numerical discretizationsof nonlinear parabolic differential equations. For various equationsof mathematical physics, the dynamics are governed by a finite-dimensionalinertial manifold, which attracts solutions at an exponentialrate. We show that Runge-Kutta time and spectral Galerkin spacediscretizations possess inertial manifolds which approximatethe inertial manifold of the continuous problem with the orderof finite-time approximations of smooth solutions. We thus obtainestimates for the distance between the inertial manifolds ofthe partial differential equation and its semi- and full discretizationswhich show the high order of the time discretization and exponentiallyfast convergence of the space discretization. These resultsare obtained by using time analyticity and Gevrey regularityof solutions of the differential equation. As an applicationof the theory, the complex Ginzburg-Landau equation is considered.  相似文献   

18.
We obtained decay and growth estimates for solutions of second-order and third-order differential-operator equations in a Hilbert space. Applications to initial–boundary value problems for linear and nonlinear non-stationary partial differential equations modeling the strongly damped nonlinear improved Boussinesq equation, the dual-phase-lag heat conduction equations, the equation describing wave propagation in relaxing media, and the Moore–Gibson–Thompson equation are given.  相似文献   

19.
This paper deals with the Cauchy problem for nonlinear first order partial functional differential equations. The unknown function is the functional variable in the equation and the partial derivatives appear in a classical sense. A theorem on the local existence of a generalized solution is proved. The initial problem is transformed into a system of functional integral equations for an unknown function and for their partial derivatives with respect to spatial variables. The existence of solutions of this system is proved by using a method of successive approximations. A method of bicharacteristics and integral inequalities are applied.  相似文献   

20.
Interest in calculating numerical solutions of a highly nonlinear parabolic partial differential equation with fractional power diffusion and dissipative terms motivated our investigation of a heat equation having a square root nonlinear reaction term. The original equation occurs in the study of plasma behavior in fusion physics. We begin by examining the numerical behavior of the ordinary differential equation obtained by dropping the diffusion term. The results from this simpler case are then used to construct nonstandard finite difference schemes for the partial differential equation. A variety of numerical results are obtained and analyzed, along with a comparison to the numerics of both standard and several nonstandard schemes. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号