首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mahmoud Abdel-Aty   《Physics letters. A》2009,373(39):3572-3576
We propose a method for analyzing Berry phase for a multi-qubit system of superconducting charge qubits interacting with a microwave field. By suitably choosing the system parameters and precisely controlling the dynamics, novel connection found between the Berry phase and entanglement creations.  相似文献   

2.
We study systematically the entanglement of a two-qubit Heisenberg XY model in thermal equilibrium in the presence of an external arbitrarily-directed static magnetic field, thereby generalizing our prior work [G. Lagmago Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)]. We show that a magnetic field having a component in the xy-plane containing the spin-spin interaction components produces different entanglement for ferromagnetic (FM) and antiferromagnetic (AFM) couplings. In particular, quantum phase transitions induced by the magnetic field-driven level crossings always occur for the AFM-coupled qubits, but only occur in FM-coupled qubits when the coupling is of Ising type or when the magnetic field has a component perpendicular to the xy-plane. When the magnetic field has a component in the xy-plane, the cut-off temperature above which the entanglement of both the FM- and AFM-coupled qubits vanishes can always be controlled using the magnetic field for any value of the XY coupling anisotropy parameter. Thus, by adjusting the magnetic field, an entangled state of two spins can be produced at any finite temperature. Finally, we find that a higher level of entanglement is achieved when the in-plane component of the magnetic field is parallel to the direction in which the XY exchange coupling is smaller.  相似文献   

3.
This paper proposes a method of generating multipartite entanglement through using d.c. superconducting quantum interference devices (SQUID) inside a standing wave cavity. In this scheme, the d.c. SQUID works in the charge region. It is shown that, a large number of important multipartite entangled states can be generated by a controllable interaction between a cavity field and qubits. It is even possible to produce entangled states involving different cavity modes based on the measurement of charge qubits states. After such superpositions states are created, the interaction can be switched off by the classical magnetic field through the SQUID, and there is no information transfer between the cavity field and the charge qubits.  相似文献   

4.
Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, „qutrit” refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.  相似文献   

5.
We investigate the entanglement and the nonlocality of two qubits interacting with a thermal reservoir. It is shown that the time behavior of these quantities exhibits a strong dependence on the initial state of two qubits, and that the entanglement and the nonlocality of two qubits can be manipulated by changing the relative phases and the amplitudes of the polarized qubits.  相似文献   

6.
In this Letter we propose a robust quantum repeater architecture building on the original Duan-Lukin-Cirac-Zoller (DLCZ) protocol [L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature (London) 414, 413 (2001)10.1038/35106500]. The architecture is based on two-photon Hong-Ou-Mandel-type interference which relaxes the long-distance stability requirements by about 7 orders of magnitude, from subwavelength for the single photon interference required by DLCZ to the coherence length of the photons. Our proposal provides an exciting possibility for robust and realistic long-distance quantum communication.  相似文献   

7.
We analyze a new scheme for quantum information processing, with superconducting charge qubits coupled through a cavity mode, in which quantum manipulations are insensitive to the state of the cavity. We illustrate how to physically implement universal quantum computation as well as multiqubit entanglement based on unconventional geometric phase shifts in this scalable solid-state system. Some quantum error-correcting codes can also be easily constructed using the same technique. In view of the gate dependence on just global geometric features and the insensitivity to the state of cavity modes, the proposed quantum operations may result in high-fidelity quantum information processing.  相似文献   

8.
We investigate the entanglement dynamics of two interacting qubits in a spin environment, which is described by an XY model with Dzyaloshinsky-Moriya (DM) interaction. The competing effects of environmental noise and interqubit coupling on entanglement generation for various system parameters are studied. We find that the entanglement generation is suppressed remarkably in weak-coupling region at quantum critical point (QCP). However, the suppression of the entanglement generation at QCP can be compensated both by increasing the DM interaction and by decreasing the anisotropy of the spin chain. Beyond the weak-coupling region, there exist resonance peaks of concurrence when the system-bath coupling equals to external magnetic field. We attribute the presence of resonance peaks to the flat band of the self-Hamiltonian. These peaks are highly sensitive to anisotropy parameter and DM interaction.  相似文献   

9.
We demonstrate the strong dependence of the entanglement dynamics of two distinguishable qubits in a trap on the relative phase of the pulses used for excitation. We show that the population and entanglement exhibits collapses and full revivals when the initial distribution of phonons is a coherent state.  相似文献   

10.
Distinctive features of the entanglement dynamics of a circuit containing two-coupled superconducting charge qubits are explored. The striking effects of junction coupling on the entanglement are presented in terms of the concurrence. We also point out the importance effects of initial state selection for obtaining different features of entanglement, such as, sudden death and sudden birth. Original Text ? Astro, Ltd., 2009. The article is published in the original.  相似文献   

11.
The populations of energy levels of interacting qubits have been studied as functions of the field amplitude and other control parameters for a constant frequency of the external electromagnetic field. It has been found that the qubit coupling constant strongly affects the quantum-coherent Landau-Zener transitions between the qubit states and the formation of an interference pattern in level populations, depending on the field parameters. It has been demonstrated that it is possible to determine the qubit coupling constant by Landau-Zener interferometry.  相似文献   

12.
Bin Zhang 《Optics Communications》2010,283(23):4676-4679
In this paper, we investigate entanglement between two two-level atoms when they simultaneously interact with a single-mode thermal field in the strong-coupling regime. We show that a slight detuning between the atomic transition frequency and the field frequency might cause high entanglement between the atoms. More interestingly, if we choose the detuning appropriately, both atoms would somehow get entangled even when both atoms are initially in the excited state.  相似文献   

13.
Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a variety of nonlinear spinlike systems. Quantum entanglement in linear systems has proven significantly more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum control more difficult. Here we demonstrate the quantum entanglement of photon states in two independent linear microwave resonators, creating N-photon NOON states (entangled states |N0> + |0N>) as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson qubits to control and measure the two resonators, and we completely characterize the entangled states with bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of linear resonators in superconducting circuits.  相似文献   

14.
葛国勤  覃翠  尹淼  黄勇华 《中国物理 B》2011,20(8):80304-080304
This paper investigates theoretically the evolutions of the entanglement entropy of a system of two coupled-charge-qubits interacting with an LC-resonator.It is found that when the initial states of the two qubits are prepared in a given superposition excited state,the evolution of the von Neumann entropy of the system depends significantly on the coupling strength between the two Josephson charge qubits.With the variation of the coupling strength,the evolution of the entanglement entropy of the system forms some structures,especially the periodically bistable properties,which are the first discovered for such a system to our knowledge.It is found that the relative entropy entanglement of the system is also sensitive to the variation of the coupling strength between the two charge qubits,some novel ’collective oscillations’ of the relative entropy are found for the system.  相似文献   

15.
二项式光场与级联三能级原子的量子纠缠   总被引:3,自引:0,他引:3       下载免费PDF全文
利用量子熵理论,研究了二项式光场与级联三能级原子的量子纠缠,讨论了光场与原子的初始参量对其量子纠缠性质的影响.结果表明,利用二项式光场的特性,可以揭示从相干态到数态之间的所有态光场与三能级原子相互作用时的量子纠缠性质.选择适当的系统参数可以制备稳定的光场-原子qutrit纠缠态. 关键词: 二项式光场 级联三能级原子 光场熵 量子纠缠  相似文献   

16.
An interaction-free measurement protocol is described for a quantum circuit consisting of a superconducting qubit and a readout Josephson junction. By measuring the state of the qubit, one can ascertain the presence of a current pulse through the circuit at a previous time without any energy exchange between the qubit and the pulse.  相似文献   

17.
How the mean photon number, the probability of excited state and intrinsic decoherence coefficient influence the time evolution of entanglement is unknown, when a single-mode quantized optic field and a two-level atom coupling system is governed by Milburn equation. The Jaynes-Cummings model is considered. A lower bound of concurrence is proposed to calculate the entanglement. Simulation results indicate that the entanglement of system increases following the increasing of intrinsic decoherence coefficient or the decreasing of the mean photon number. Besides that, the entanglement of system decreases, while the probability of exited state increases from 0 to 0.1, and increases, while the probability of exited state increases from 0.1 to 1.  相似文献   

18.
How the mean photon number, the probability of excited state and intrinsic decoherenee coefficient in-fluence the time evolution of entanglement is unknown, when a single-mode quantized optic field and a two-levelatom coupling system is governed by Milburn equation. The Jaynes-Cummings model is considered. A lowerhound of concurrence is proposed to calculate the entanglement. Simulation results indicate that the entanglementof system increases following the increasing of intrinsic decoherence coefficient or the decreasing of the mean photon number. Besides that, the entanglement of system decreases, while the probability of exited state increasesfrom 0 to 0.1, and increases, while the probability of exited state increases from 0.1 to 1.  相似文献   

19.
单模光场与二能级原子的纠缠的内禀退相干   总被引:1,自引:0,他引:1  
在一个考虑了内禀退相干的单模光场与二能级原子的耦合系统中,平均光子数,激发态的概率和退相干系数如何影响纠缠随时间演化还并不清楚.Jaynes-Cummings模型被用来描述光场与原子间相互作用.用concurrence下限来计算纠缠度.模拟的结果表明纠缠度随着退相干系数的增加或平均光子数的减少而增加.当激发态的概率在0至0.1之间,纠缠度随着的概率增加而减少;当激发态的概率在0.1至1之间,纠缠度随着的概率增加而增加.无论以上参数取何值,纠缠度都随着时间而减少.  相似文献   

20.
We present protocols to generate quantum entanglement on nonlocal magnons in hybrid systems composed of yttrium iron garnet (YIG) spheres, microwave cavities and a superconducting (SC) qubit. In the schemes, the YIGs are coupled to respective microwave cavities in resonant way, and the SC qubit is placed at the center of the cavities, which interacts with the cavities simultaneously. By exchanging the virtual photon, the cavities can indirectly interact in the far-detuning regime. Detailed protocols are presented to establish entanglement for two, three and arbitrary N magnons with reasonable fidelities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号