首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper. A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived. A dimensionless memory (time) number 0 is introduced. The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ=0. The complex dispersion equation is numerically solved to investigate the dispersion relation. The influences of θ and water depth on the dispersion characteristics and wave decay are discussed. It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.  相似文献   

2.
A theory for linear surface gravity waves on a semi-infinite layer of viscoelastic fluid described by a Jeffrey model is presented. Results are given for the decay rate and the phase velocity as a function of the parameters of the fluid: a nondimensional time constant, and a ratio of the retardation time to the relaxation time. At small wave numbers the behavior is Newtonian. In other cases depending on the nondimensional parameters, a number of possible other behaviors exist. The influence of the non-dimensional parameters on the growth rate of Rayleigh-Taylor instability is also discussed.  相似文献   

3.
The influence of viscoelastic ocean beds on the characteristics of surface waves passing through mangrove forests is analyzed under the assumption of linearized water wave theory in two dimensions. The trunks of the mangroves are assumed to be in the upper-layer inviscid fluid domain, whilst the roots are inside the viscoelastic bed. The associated equation of motion is obtained by coupling the Voigt’s model for flow within the viscoelastic medium with the equation of motion in the presence of mangroves. The modified dynamic conditions are coupled with the kinematic conditions to obtain the boundary condition at the free surface and the interface of the two fluids consisting of the upper layer inviscid fluid and the viscoelastic fluid bed. To understand the effects of bed viscosity as well as elasticity on energy dissipation, the complex dispersion relation associated with the plane progressive wave is derived and analyzed. Effect of physical parameters associated with mangroves and viscoelastic bed on wave motion in surface and internal modes are computed and analyzed to understand their roles in attenuating wave effects. The present model will be useful in the better understanding of wave propagation through mangroves in the coastal zone having muddy seabed.  相似文献   

4.
This paper describes a theory of surface Love waves propagating in a layered elastic waveguide loaded on its surface by a viscous (Newtonian) liquid. An analytical expression for the complex dispersion equation of Love waves has been established. The real and imaginary parts of the complex dispersion equation were separated and resulting system of nonlinear algebraic equations was solved numerically. The influence of the viscosity of liquid on the dispersion curves of phase velocity, the wave attenuation and the distribution of the Love wave amplitude is analyzed numerically. The propagation loss is produced only by the viscosity of liquids. Elastic layered waveguide is assumed to be loss-less. The numerical solutions show the dependence of the phase velocity change, the wave attenuation and the wave amplitude distribution in terms of the liquid viscosity and the wave frequency. The results of the investigations are fundamental and can be applied in the design and development of liquid viscosity sensors and biosensors, in Non-Destructive Testing (NDT) of materials, in geophysics and seismology.  相似文献   

5.
6.
7.
Di Federico  Vittorio 《Meccanica》1998,33(2):127-137
Unsteady flow of a viscoplastic fluid on an inclined plane is examined. The fluid is described by the three-parameter Herschel–Bulkley constitutive equation. The set of equations governing the flow is presented, recovering earlier results for a Bingham fluid and steady uniform motion. A permanent wave solution is then derived, and the relation between wave speed and flow depth is discussed. It is shown that more types of gravity currents are possible than in a Newtonian fluid; these include some cases of flows propagating up a slope. The speed of permanent waves is derived and the possible surface profiles are illustrated as functions of the flow behavior index.  相似文献   

8.
Using Biot’s consolidation theory, effect of poroelastic bed on flexural gravity wave motion is analyzed in both the cases of single-layer and two-layer fluids. The model for the flexural gravity waves is developed using linear water wave theory and small amplitude structural response in finite water depth. The effects of permeability and shear modulus of poroelastic bed and time period on flexural gravity wave motion are studied by analyzing the dispersion relation, phase speed, plate deflection, interface elevation and pressure distribution along water depth. Various results for surface gravity waves are analyzed as special cases. The study reveals that bed permeability retards the hydrodynamic pressure distribution along the water depth significantly compared to shear modulus whilst, floating plate deflection decreases significantly with change in shear modulus compared to permeability of the poroelastic bed. The present study can be generalized to analyze various wave–structure interaction problems over poroelastic bed.  相似文献   

9.
The effect of viscosity on dispersion of capillary-gravity waves becomes significant when the attenuation coefficient is greater than about 2.5% of the wave number. For low viscosity fluids such as water this condition is met at frequencies greater than about 5 kHz in which case direct measurement of wavelength is difficult. For higher viscosity fluids the effect appears at much lower frequencies but direct measurement of wavelength becomes difficult since viscosity causes severe attenuation of surface waves. We have overcome the measurement difficulties by using a new miniature laser interferometer, which directly measures the wavelength of standing capillary waves with the requisite precision to yield reliable dispersion data for viscous fluids. Here we review the effect of viscosity on the dispersion relation and present new experimental data on dispersion of capillary waves in several water-glycerol mixtures. Our data provides direct experimental verification of the theoretical analysis.  相似文献   

10.
T.J. Woodhead 《Wave Motion》1983,5(2):157-165
Ray theory is extended to consider the case of an accelerating disturbance which is producing waves in a rotating stratified fluid. Starting from the equations of motion, dispersion relations are derived for surface gravity waves, capillary waves, Rossby waves and internal-inertial waves. The wave system is studied in each case for the problem of a body starting impulsively from rest and for a body starting from rest and moving with constant acceleration.  相似文献   

11.
Effect of viscoelastic bed on the hydroelastic response analysis of very large floating structures is studied using the linear water wave theory and small amplitude structural response in finite water depth. The floating structure is modeled using Euler–Bernoulli beam equation and the bottom bed is assumed to be viscoelastic in nature and is based on the Voigt’s model. The dispersion relation, phase speed and response amplitude of the floating structure as well as viscoelastic bed surface, pressure distribution along water depth are analyzed to study the effect of viscoelastic bed parameters, flexural rigidity of the floating structure, time period on flexural gravity wave motion. The study reveals that structural response of the floating structure can be mitigated for moderate thickness of the viscoelastic layer. Moreover, both shear modulus and viscosity of the viscoelastic layer play dominant role in reducing the structural response compared to the flexural rigidity of the structure. Further, pressure distribution within the viscoelastic bed decreases at a higher rate compared to the inviscid fluid layer irrespective of shear modulus and viscosity. The present study will be of immense help in the site selection of very large floating structures in the coastal water and installation of various marine facilities over muddy bed.  相似文献   

12.
线性黏弹性球面波的特征线分析   总被引:1,自引:0,他引:1  
基于ZWT黏弹性本构方程建立了体现高应变率效应的黏弹性球面波的控制方程组,包含5个偏微分方程,解5个未知量v、r、、r和。采用特征线法,问题转化为解3族特征线上的5个常微分方程,物理上图像清晰,数学上易于求解。特征线数值分析显示,黏弹性球面波的衰减和弥散效应超过线弹性球面波。球面扩散引起的环向拉应力是导致介质拉伸破坏的主因。进一步还针对强间断黏弹性球面波得出其衰减特性的解析表达式,表明这种更强的衰减特性是几何扩散效应和本构黏性效应两者共同作用的后果。  相似文献   

13.
For liquids with high viscosity and low thermal conductivity, viscous dissipation can cause appreciable errors in rheological property measurements. Here, the influences of both viscous dissipation and fluid inertia on the property measurements in oscillatory sliding plate rheometry are investigated. For Newtonian fluids, Bird (1965) solved the combined problem analytically, but only for high frequencies. Here his solution is extended to any frequencies. Also, the equations of motion and energy are solved for linear viscoelastic fluids, and new analytical solutions for the velocity and temperature profiles are given. In both Newtonian and linear viscoelastic fluids, the temperature rise in the gap increases with frequency. The location of the maximum temperature shifts from the mid-plane at low frequency towards the moving wall at high frequency. The fluid inertia increases the viscous dissipation in both fluids. By solving the combined problem, this paper simplifies rheometer design by providing one unified criterion for avoiding measurement errors. Operating limits are presented graphically for minimizing the effects of both fluid inertia and viscous dissipation in oscillatory sliding plate rheometry.  相似文献   

14.
A linear analysis is performed to investigate the competition between axisymmetric and non-axisymmetric instability of an electrically charged viscoelastic liquid jet. The liquid is assumed to be a dilute polymer solution modeled by the Oldroyd-B constitutive equation. As to its electric properties, the liquid is assumed to be of finite electrical conductivity and is described by the Taylor–Melcher leaky dielectric theory. An analytical dispersion relation is derived and the temporal growth rate is solved numerically. Two viscoelastic liquids, i.e. a PEO aqueous solution and a PIB Boger fluid, are taken as examples to study the effects of electric field and electrical conductivity on jet instability. The result shows that electric field basically destabilizes both the axisymmetric and the non-axisymmetric mode. On the other hand, the effect of electrical conductivity on the modes is quite limited. An energy analysis shows that elasticity enhances both axisymmetric and non-axisymmetric jet instability and its destabilization effect on the axisymmetric mode is more profound. For viscoelastic jets of high Deborah numbers the combined effect of viscosity and elasticity is possibly characterized by an equivalent Reynolds number related only to the viscosity of solvent.  相似文献   

15.
In this paper, we have discussed the linear stability analysis of the electrified surface separating two coaxial Oldroyd-B fluid layers confined between two impermeable rigid cylinders in the presence of both interfacial insoluble surfactant and surface charge through porous media. The case of long waves interfacial stability has been studied. The dispersion relation is solved numerically and hence the effects of various parameters are illustrated graphically. Our results reveal that the influence of the physicochemical parameter β is to shrink the instability region of the surface and reduce the growth rate of the unstable normal modes. Such important effects of the surfactant on the shape of interfacial structures are more sensitive to the variation of the β corresponding to non-Newtonian fluids-model compared with the Newtonian fluids model. In the case of long wave limit, it is demonstrated that increasing β, has a dual role in-fluence (de-stabilizing effects) depending on the viscosity of the core fluid. It has a destabilizing effect at the large values of the core fluid viscosity coefficient, while this role is exchanged to a regularly stabilizing influence at small values of such coefficient.  相似文献   

16.
A study of heat transport in Rayleigh–Bénard convection in viscoelastic liquids with/without gravity modulation is made using a most minimal representation of Fourier series and a representation with higher modes. The Oldroyd-B constitutive relation is considered. The resulting non-autonomous Lorenz model (generalized Khayat–Lorenz model of four modes and seven modes) is solved numerically using the adaptive-grid Runge–Kutta–Fehlberg45 method to quantify the heat transport. The effect of gravity modulation is shown to be stabilizing there by leading to a situation of reduced heat transfer. The Deborah number is shown to have an antagonistic influence on convection compared to the stabilizing effect of modulation amplitude and elastic ratio. The results in respect of Maxwell, Rivlin–Ericksen and Newtonian liquids are obtained as particular cases of the present study. A transformation of the momentum equations illustrates the equivalence of present approach and the one due to Khayat that uses normal stresses explicitly.  相似文献   

17.
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions is developed in weakly viscous fluids to investigate the motion of single free surface standing wave by linearizing the Navier-Stokes equation. The fluid field is divided into an outer potential flow region and an inner boundary layer region. The solutions of both two regions are obtained and a linear amplitude equation incorporating damping term and external excitation is derived. The condition to appear stable surface wave is obtained and the critical curve is determined. In addition, an analytical expression of damping coefficient is determined. Finally, the dispersion relation, which has been derived from the inviscid fluid approximation, is modified by adding linear damping. It is found that the modified results are reasonably closer to experimental results than former theory. Result shows that when forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when forcing frequency is high, the surface tension of the fluid is prominent.  相似文献   

18.
A study has been made of the motion of long bubbles in inclined pipes containing viscous Newtonian and non-Newtonian liquids. A semi-theoretical expression for the rise velocity of air bubbles in water is derived on the hypothesis that the dominant factor is the momentum exchange of the bubble underflow, i.e. the bubble nose shape. The correlation calls on empirical inputs from established literature on bubble rise speeds at high Reynolds number. The effects of increasing Newtonian viscosity are analysed with reference to the momentum exchange and it is shown how viscosity reduces the inclination dependence of the bubble Froude number. Results from an experimental survey in seven different non-Newtonian liquids in three different diameter pipes are presented. These data are correlated so as to decouple the effects of surface tension and viscosity. An empirical relation is proposed for the effective shear rate in the fluid travelling around the bubble nose. Our correlation is compared to literature data from a broad range of Reynolds numbers with excellent agreement except at shallow angles.  相似文献   

19.
The attenuation and dispersion of elastic waves in fluid-saturated rocks due to the viscosity of the pore fluid is investigated using an idealized exactly solvable example of a system of alternating solid and viscous fluid layers. Waves in periodic layered systems at low frequencies are studied using an asymptotic analysis of Rytov’s exact dispersion equations. Since the wavelength of shear waves in fluids (viscous skin depth) is much smaller than the wavelength of shear or compressional waves in solids, the presence of viscous fluid layers necessitates the inclusion of higher terms in the long-wavelength asymptotic expansion. This expansion allows for the derivation of explicit analytical expressions for the attenuation and dispersion of shear waves, with the directions of propagation and of particle motion being in the bedding plane. The attenuation (dispersion) is controlled by the parameter which represents the ratio of Biot’s characteristic frequency to the viscoelastic characteristic frequency. If Biot’s characteristic frequency is small compared with the viscoelastic characteristic frequency, the solution is identical to that derived from an anisotropic version of the Frenkel–Biot theory of poroelasticity. In the opposite case when Biot’s characteristic frequency is greater than the viscoelastic characteristic frequency, the attenuation/dispersion is dominated by the classical viscoelastic absorption due to the shear stiffening effect of the viscous fluid layers. The product of these two characteristic frequencies is equal to the squared resonant frequency of the layered system, times a dimensionless proportionality constant of the order 1. This explains why the visco-elastic and poroelastic mechanisms are usually treated separately in the context of macroscopic (effective medium) theories, as these theories imply that frequency is small compared to the resonant (scattering) frequency of individual pores.  相似文献   

20.
Coating of viscous and viscoelastic liquids is examined both theoretically and experimentally. A rigid blade, accurately positioned over a rotating roll, provides an experimental system in which coating thickness is measured as a function of geometric parameters. A perturbation solution to the Navier—Stokes equations yields a lubrication theory which shows agreement with the data to an extent depending on the specific geometry.The effect of a non-Newtonian viscosity is explored by adopting a purely viscous power-law model. The lubrication equations are solved by the method of Horowitz and Steidler [1], and predict an increase in coating thickness relative to the Newtonian case. Data for viscoelastic fluids show both an increase and a decrease in coating thickness compared with Newtonian liquids depending on the relative magnitude of shear thinning and elastic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号