首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple theory is described for the transmission of low frequency sound through the walls of rectangular ducts, particularly those in air conditioning systems. The model is based on a coupled acoustic/structural wave system, and it is assumed that the duct radiates in the same way as a finite-length line source incorporating a single travelling wave. Measurements of wall transmission loss on two types of duct system are compared to theoretical predictions, and good agreement is obtained within the frequency range of validity of the theory. It is concluded that the present approach should give reliable estimates of noise transmission in practical situations.  相似文献   

2.
This study attempted to control the radiated exterior noise from a rectangular enclosure in which an internal plate vibrates by acoustic excitation and noise is thus radiated from that plate. Multi-channel active control was applied to reduce the vibration and external radiation of this enclosed plate. A piezoelectric ceramic was used as a distributed actuator for multiple mode control of the vibration and radiated noise in the acoustically excited plate. To maximize the effective control, an approach was proposed for attachment the piezoelectric actuator in the optimal location. The plate and internal acoustic space in the enclosure are coupled with each other. This will change dominant frequency characteristics of the plate and, thus, those of the externally radiated noise. Active noise control was accomplished using an accelerometer attached to the plate and a microphone placed adjacent to that plate as an error sensor under acoustic excitation of sine wave and white noise. It was found that the control of radiated external radiation noise requires a microphone as an error sensor, a sound pressure sensor due to vibration of the plate, differences in the dominant frequency of externally radiated noise, and complex vibration modes of the plate.  相似文献   

3.
The acoustic response (in particular, the transmission) of a periodic distribution of macroscopic inclusions within a rigid frame porous plate (similar to a sonic crystal) is studied by the multipole method. Numerical results show that the addition of grating stacks leads to bandgaps within the audible frequency range for a small number of stacks, this being associated with a large decrease of the transmission coefficient of the initial plate. The first bandgap is of practical interest for noise shielding, i.e. very low transmission. The second bandgap enables total acoustic absorption within a narrow frequency range due to the fact that a modified mode of the plate lies within this bandgap.  相似文献   

4.
The wave propagation in a periodic array of micro-perforated tube mufflers is investigated theoretically, numerically and experimentally. Because of the high acoustic resistance and low mass reactance due to the sub-millimeter perforation, the micro-perforated muffler can provide considerable sound attenuation of duct noise. Multiple mufflers are often used to enhance attenuation performance. When mufflers are distributed periodically in a duct, the periodic structure produces special dispersion characteristics in the overall sound transmission loss. The Bloch wave theory and the transfer matrix method are used to study the wave propagation in periodic micro-perforated tube mufflers and the dispersion characteristics of periodic micro-perforated mufflers are examined. The results predicted by the theory are compared with finite element method simulation and experimental results. The results indicate that the periodic structure can influence the performance of micro-perforated mufflers. With different periodic distances, the combination of the periodic structure and the micro-perforated tube muffler can contribute to the control of lower frequency noise with a broader frequency range or improvement of the peak transmission loss around the resonant frequency.  相似文献   

5.
This paper develops a three-dimensional analytical model of a fluid-loaded acoustic coating affixed to a rib-stiffened plate. The system is loaded by a plane wave that is harmonic both spatially and temporally. The model begins with Navier-Cauchy equations of motion for an elastic solid, which produces displacement fields that have unknown wave propagation coefficients. These are inserted into stress equations at the boundaries of the plate and the acoustic coating. These stress fields are coupled to the fluid field and the rib stiffeners with force balances. Manipulation of these equations develops an infinite number of indexed equations that are truncated and incorporated into a global matrix equation. This global matrix equation can be solved to determine the wave propagation coefficients. This produces analytical solutions to the systems’ displacements, stresses, and scattered pressure field. This model, unlike previously developed analytical models, has elastic behavior and thus incorporates higher order wave motion that makes it accurate at higher wavenumbers and frequencies. An example problem is investigated for three specific model results: (1) the dynamic response, (2) a sonar array embedded in the acoustic coating, and (3) the scattered pressure field. An expression for the high frequency limitation of the model is derived. It is shown that the ribs can have a significant impact on the structural acoustic response of the system.  相似文献   

6.
Most established techniques for analyzing sound transmission in ducts containing orifices plates are only applicable for plane wave propagation. Once the wavelength of the sound approaches the cross section of the duct, higher order mode propagation in the system must be considered in the analysis. This is a numerically intensive activity if fully coupled calculations of the higher order modes are undertaken. This investigation estimates the acoustic fields in a duct with a simple orifice plate installed using an uncoupled model to estimate the higher order mode contribution. The uncoupled model is then used as the basis for a hybrid decomposition approach to estimate the sound field in the regions before and after the orifice plate installed in a circular duct. This approach is applied to a duct, excited by a point source over a wide frequency range, containing a single orifice plate installed a distance inside the duct. Different orifice plates with one, two and multiple openings are investigated. Of particular interest is the location of the point source relative to the duct axis. If the source is located concentric to the duct axis then, without any orifice plate present, only axially symmetric higher order modes may be excited in the duct. Thus, the investigation considers the point source located in the concentric position and in eccentric positions to vary the contribution from the different types of higher order mode. Estimates of the acoustic fields in the duct obtained using the hybrid decomposition approach are compared with measured data and the applicability of using an uncoupled estimate for the acoustic fields is commented on.  相似文献   

7.
一种分析周期加筋板声辐射的高效方法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究周期加筋板的声辐射特性,建立了一种计算水中周期加筋板在简谐点力作用下的远场辐射声压的高效方法。该方法借助于傅里叶变换法只要先将耦合系统的声振方程,加强筋的弯曲和扭转运动方程,声学波动方程和耦合边界条件转换到波数域中,联合求解得到一组关于平板横向位移的无限大耦合代数方程组,再将该方程组截断成有限大小由数值方法求出波数域中的位移响应,便可结合稳相法得到远场辐射声压。与现有方法给出的结果对比发现二者完全吻合,验证了本文方法的有效性;通过数值方法研究了激励力位置、板厚,加强筋间距和宽度对周期加筋板声辐射特性的影响,得到了具有实际意义的结论。   相似文献   

8.
All manned spacecraft are vulnerable to leaks generated by micrometeorite or debris impacts. Methods for locating such leaks using leak-generated, structure-borne ultrasonic noise are discussed and demonstrated. Cross-correlations of ultrasonic noise waveforms from a leak into vacuum are used to find the location of the leak. Four methods for sensing and processing leak noise have been developed and tested and each of these can be used to reveal the leak location. The methods, based on phased-array, distributed sensor, and dual sensor approaches, utilize the propagation patterns of guided ultrasonic Lamb waves in the spacecraft skin structure to find the source or direction of the leak noise. It is shown that each method can be used to successfully locate the leak to within a few millimeters on a 0.6-m2 aluminum plate. The relative merits of the four methods are discussed.  相似文献   

9.
Sound radiation from shear deformable stiffened laminated plates   总被引:1,自引:0,他引:1  
Sound radiation from shear deformable stiffened laminated plates is studied theoretically. The equations of motion for the composite laminated plate are derived on the basis of the first-order shear deformation plate theory. Two sets of parallel stiffeners interact with the laminated plate only through the normal line forces. By using the Fourier wavenumber transform and the stationary phase method, the far-field sound pressure is described analytically. Sound pressure given by the first-order shear deformation plate theory and the classical thin plate theory is compared, and the differences of sound pressure are shown in the high frequency range for an isotropic plate. Sound pressure and the transverse displacement spectra are presented to illustrate the effects of force location, stiffeners and angle-ply layers. Sound radiation from symmetric and antisymmetric composite plates with multiple loadings is also investigated.  相似文献   

10.
针对噪声环境下微小气体泄漏难以准确定位的问题,提出了一种基于改进最小方差无失真响应角度谱算法的气体泄漏定位方法。该算法通过引入信噪比追踪加权的方式,提取受噪声影响较小且单个声源能量占优的时频支撑域,并通过Softplus激活函数自适应地调整不同频率分量对角度谱函数的贡献,增加泄漏声源占优的时频域权重;此外,引入基于时频稀疏性的分频带处理,使各子频带内存在一个主导声源能量占优,抑制低频段噪声能量的积累同时避免高频混叠现象。通过软件仿真计算以及实验验证算法的性能,结果表明改进最小方差无失真响应角度谱算法可以实现气体泄漏源的精准定位,定位结果的最大误差在3.5°以内。相比传统算法,该方法在低信噪比和低采样点数下有更高的稳定性、抗噪能力及准确率,可为气体泄漏定位的实际应用提供一定的参考价值。  相似文献   

11.
胡博  时洁  时胜国  孙玉  朱中锐 《中国物理 B》2016,25(2):24305-024305
We propose an underwater asymmetric acoustic transmission structure comprised of two media each with a gradient change of acoustic impedance. By gradually increasing the acoustic impedances of the media, the propagating direction of the acoustic wave can be continuously bent, resulting in allowing the acoustic wave to pass through along the positive direction and blocking acoustic waves from the negative one. The main advantages of this structure are that the asymmetric transmission effect of this structure can be realized and enhanced more easily in water. We investigate both numerically and experimentally the asymmetric transmission effect. The experimental results show that a highly efficient asymmetric acoustic transmission can be yielded within a remarkable broadband frequency range, which agrees well with the numerical prediction. It is of potential practical significance for various underwater applications such as reducing vibration and noise.  相似文献   

12.
Sound transmission through a system of double shells, lined with poroelastic material in the presence of external mean flow, is studied. The porous material is modeled as an equivalent fluid because shear wave contributions are known to be insignificant. This is achieved by accounting for the energetically most dominant wave types in the calculations. The transmission characteristics of the sandwich construction are presented for different incidence angles and Mach numbers over a wide frequency range. It is noted that the transmission loss exhibits three dips on the frequency axis as opposed to flat panels where there are only two such frequencies—results are discussed in the light of these observations. Flow is shown to decrease the transmission loss below the ring frequency, but increase this above the ring frequency due to the negative stiffness and the damping effect added by the flow. In the absence of external mean flow, porous material provides superior insulation for most part of the frequency band of interest. However, in the presence of external flow, this is true only below the ring frequency—above this frequency, the presence of air gap in sandwich constructions is the dominant factor that determines the acoustic performance. In the absence of external flow, an air gap always improves sound insulation.  相似文献   

13.
This paper presents analytical studies on the vibro-acoustic and sound transmission loss characteristics of functionally graded material (FGM) plates using a simple first-order shear deformation theory. The material properties of the plate are assumed to vary according to power law distribution of the constituent materials in terms of volume fraction. The sound radiation due to sinusoidally varying point load, uniformly distributed load and obliquely incident sound wave is computed by solving the Rayleigh integral with a primitive numerical scheme. Displacement, velocity, acceleration, radiated sound power level, radiated sound pressure level and radiation efficiency of FGM plate for varying power law index are examined. The sound transmission loss of the FGM plate for several incidence angles and varying power law index is studied in detail. It has been found that, for the plate being considered, the sound power level increases monotonically with increase in power law index at lower frequency range (0–500 Hz) and a non-monotonic trend is appeared towards higher frequencies for both point and distributed force excitations. Increased vibration and acoustic response is observed for ceramic-rich FGM plate at higher frequency band; whereas a similar trend is seen for metal-rich FGM plate at lower frequency band. The dBA values are found to be decreasing with increase in power law index. The radiation efficiency of ceramic-rich FGM plate is noticed to be higher than that of metal and metal-rich FGM plates. The transmission loss below the first resonance frequency is high for ceramic-rich FGM plate and low for metal-rich FGM plate and further depends on the specific material property. The study has found that increased transmission loss can be achieved at higher frequencies with metal-rich FGM plates.  相似文献   

14.
L. J. Bond  J. Taylor 《Ultrasonics》1991,29(6):451-458
An analysis of the interaction of a pulse of Rayleigh waves on a plate with a rectangular flange or rib attached in the far field of its acoustic emission (AE) source is presented. A finite difference (FD) model is used to give numerical visualizations of the development of the complete wave-field propagating through the structure and also to give displacement data for selected points. An ‘energy partition model’, for Rayleigh wave propagation across the rib has been developed and is described. Ray theory wave arrival time calculations are given for the propagation of various mode-converted components transmitted across the flange. A series of experimental measurements of AE wave propagation across a T-butt welded rib on a plate were made and these are compared with the model predictions. The practical implications of these findings for acoustic emission monitoring of large structures of complex shape are discussed.  相似文献   

15.
王积硕  许才彬  赵友选  胡宁  邓明晰 《中国物理 B》2022,31(1):14301-014301
A novel Lamb wave frequency-mixing technique is proposed for locating microcracks in a thin plate,which does not require the resonance condition of Lamb wave mixing and can accurately locate the microcracks through only one-time sensing.Based on the bilinear stress-strain constitutive model,a two-dimensional finite element(FE)model is built to investigate the frequency-mixing response induced by the interaction between two primary Lamb waves and a microcrack.When two primary Lamb waves of A0 and S0 modes with different frequencies excited on the same side of the plate simultaneously impinge on the examined microcrack,under the modulation of the contact acoustic nonlinearity,the microcrack itself can be deemed as the secondary sound source and it will radiate the Lamb waves of new combined frequencies.Based on the time of flight of the generated A0 mode at difference frequency,an indicator named normalized amplitude index(NAI)is defined to directly locate the multi-microcracks in the given plate.It is found that the number and location of the microcracks can be intuitively visualized by using the NAI based frequency-mixing technique.It is also demonstrated that the proposed frequency mixing technique is a promising approach for the microcrack localization.  相似文献   

16.
Conventional triangulation techniques fail to correctly predict the acoustic source location in anisotropic plates due to the direction dependent nature of the elastic wave speeds. To overcome this problem, Kundu et al. [1] proposed an alternative method for acoustic source prediction based on optimizing an objective function. They defined an objective function that uses the time of flight information of the acoustic waves to the passive transducers attached to the plate and the wave propagation direction (θ) from the source point to the receiving sensors. Some weaknesses of the original algorithm proposed in Ref. [1] were later overcome by developing a modified objective function [2]. A new objective function is introduced here to further simplify the optimization procedure and improve the computational efficiency. A new algorithm for source location is also introduced here to increase the source location accuracy. The performance of the objective function and source location algorithm were experimentally verified on a homogeneous anisotropic plate and a non-homogeneous anisotropic plate with a doubler patch. Results from these experiments indicate that the new objective function and source location algorithm have improved performance when compared with those discussed in Refs. [1] and [2].  相似文献   

17.
正交各向异性板液/固界面的声反射与声透射   总被引:2,自引:1,他引:1       下载免费PDF全文
采用Legendre正交多项式法,对液/固界面声波反射和透射系数进行求解。利用Legendre正交多项式对正交各向异性板中的位移解进行展开,推导出板中的应力和波动控制方程。联立液/固界面的边界条件和波动控制方程,建立线性无关方程组,用以计算液/固界面的反射和透射系数及Legendre多项式的展开系数,计算所得铝板液/固界面的反射和透射系数与传递矩阵法的计算结果吻合良好。以单向纤维增强复合材料板为例,在不同的方位角下,分析了反射和透射系数随斜入射角度、入射波频率的变化关系,以及板中声场的位移分布。所取Legendre正交多项式截止阶数越大,可用来计算的频厚积范围越大。研究拓展了Legendre正交多项式法的适用范围,为材料力学性能的声学测量提供了理论基础。   相似文献   

18.
The effectiveness of introducing flexible structural layers into air conveying ducts for controlling noise is investigated through theoretical and experimental means, focusing at low frequencies where conventional passive silencing technology is least effective. Previous theoretical work has shown that using flexible rather than rigid walls has the potential to achieve high transmission losses. The physical mechanisms responsible for structural acoustic silencing, including the relation between transmission loss peaks and structural resonance corresponding to different transverse structural modes, are presented. Sensitivity of the performance to acoustic and structural boundary conditions is discussed. To eliminate radiated noise from these walls (breakout noise), a rigid walled cavity is introduced under the flexible plate. The challenge is to find means to reject plane waves in the two-duct system. Designs that overcome these issues and achieve appreciable transmission loss are investigated. Results based on three-dimensional finite element simulations are compared with experimental results.  相似文献   

19.
超材料型周期管路声传播特性及低频宽带控制   总被引:2,自引:0,他引:2       下载免费PDF全文
船舶管路系统噪声的低频宽带控制是船舶设计和制造中亟待解决的关键问题之一。将超材料理论引入船舶管路系统的结构设计,构造了具有低频声波带隙的一维周期管路结构,并给出了周期管路声波带隙和声波透射系数的计算方法。计算结果表明,该周期管路同时存在声波布拉格带隙和局域共振带隙。在这两种带隙频率范围内,声波在系统中的传播将被衰减抑制。进一步发现,布拉格和局域共振带隙在一定条件会发生耦合,出现带隙耦合展宽现象,且两种带隙存在精确耦合条件。利用带隙耦合的展宽效应和低频设计,可实现声波在低频范围内的传播操控,从而达到船舶管路系统低频噪声宽带控制的目的。   相似文献   

20.
孙中政  雷坤  王宇飞  韩旭 《应用声学》2021,40(1):156-162
针对汽车进气系统三通管路的特点,提出了多通管路的管壁传递损失测试方法。并以某车型的双涡轮增压发动机进气三通管道为例,采用该方法评价其用塑料代替铝后的声学性能,主要以声传递损失来评价涡轮增压器噪声通过三通连接管路管壁的辐射和透射特性。测试过程中,三通管道的两个连接涡轮增压器端口分别用声源两次发声,靠近进气歧管端口采用两种不同反射末端,然后在每段管路布置两个压力场扬声器进行测试,并基于平面波分离入射波和反射波,同时在三通管道外用声功率半球面十点分布法自由场扬声器测试,经过3次测量来计算管道管壁的声传递损失。由于声传递损失是管道本身特性决定,所以该测试方法能够准确找出塑料件和金属件在不同频率的声学特性差异。而后,在声传递损失测试结果的基础上,结合近场声全息方法和波束形成原理进行声源识别,可知该三通管路材质改为塑料后主要噪声来自焊缝薄弱处的中高频透射声和管壁结构的低频辐射声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号