首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Eckhaus stability boundaries of travelling periodic roll patterns arising in binary fluid convection is analysed using high-resolution numerical methods. We present results corresponding to three different values of the separation ratio used in experiments. Our results show that the subcritical branches of travelling waves bifurcating at the onset of convection suffer sideband instabilities that are restabilised further away in the branch. If this restabilisation is produced after the turning point of the travelling-wave branch, these waves do not become stable in a saddle node bifurcation as would have been the case in a smaller domain. In the regions of instability of the uniform travelling waves we expect to find either transitions between states of different wave number or modulated travelling waves arising in these bifurcations.  相似文献   

2.
化存才  刘延柱 《中国物理》2002,11(6):547-552
For the nonlinear wave equation with quartic polynomial potential, bifurcation and solitary waves are investigated. Based on the bifurcation and the energy integral of the two-dimensional dynamical system satisfied by the travelling waves, it is very interesting to find different sufficient and necessary conditions in terms of the bifurcation parameter for the existence and coexistence of bright, dark solitary waves and shock waves. The method of direct integration is developed to give all types of solitary wave solutions. Our method is simpler than other newly developed ones. Some results are similar to those obtained recently for the combined KdV-mKdV equation.  相似文献   

3.
We study the limiting behavior of large-amplitude standing waves on deep water using high-resolution numerical simulations in double and quadruple precision. While periodic traveling waves approach Stokes's sharply crested extreme wave in an asymptotically self-similar manner, we find that standing waves behave differently. Instead of sharpening to a corner or cusp as previously conjectured, the crest tip develops a variety of oscillatory structures. This causes the bifurcation curve that parametrizes these waves to fragment into disjoint branches corresponding to the different oscillation patterns that occur. In many cases, a vertical jet of fluid pushes these structures upward, leading to wave profiles commonly seen in wave tank experiments. Thus, we observe a rich array of dynamic behavior at small length scales in a regime previously thought to be self-similar.  相似文献   

4.
We perform a bifurcation analysis of a model of Ca2+ wave propagation in the basal region of pancreatic acinar cells. The model we consider was first presented in Sneyd et al. [J. Sneyd, K. Tsaneva-Atanasova, J.I.E. Bruce, S.V. Straub, D.R. Giovannucci, D.I. Yule, A model of calcium waves in pancreatic and parotid acinar cells, Biophys. J. 85 (2003) 1392–1405], where a partial bifurcation analysis was given of the model in the absence of diffusion. We obtain more complete information about bifurcations of the diffusionless model via numerical studies, then analyse the spatially extended model by numerical investigation of the travelling wave equations and direct numerical solution of the model equations. We find solitary waves in the model equations arising from homoclinic bifurcations in the travelling wave equations. The solitary waves exist and appear to be stable for a significant interval of the primary bifurcation parameter (i.e., the concentration of inositol trisphosphate) but are eventually replaced by irregular spatio-temporal behaviour. The homoclinic bifurcations are related to a number of complicated mathematical structures in the travelling wave equations, including an anomalous homoclinic-Hopf bifurcation, heteroclinic bifurcations between an equilibrium and a periodic orbit, and homoclinic bifurcations of periodic orbits.  相似文献   

5.
Many oscillatory biological systems show periodic travelling waves. These are often modelled using coupled reaction-diffusion equations. However, the effects of different movement rates (diffusion coefficients) of the interacting components on the predictions of these equations are largely unknown. Here we investigate the ways in which varying the diffusion coefficients in such equations alters the wave speed, time period, wavelength, amplitude and stability of periodic wave solutions. We focus on two sets of kinetics that are commonly used in ecological applications: lambda-omega equations, which are the normal form of an oscillatory coupled reaction-diffusion system close to a supercritical Hopf bifurcation, and a standard predator-prey model. Our results show that changing the ratio of the diffusion coefficients can significantly alter the shape of the one-parameter family of periodic travelling wave solutions. The position of the boundary between stable and unstable waves also depends on the ratio of the diffusion coefficients: in all cases, stability changes through an Eckhaus (‘sideband’) instability. These effects are always symmetrical in the two diffusion coefficients for the lambda-omega equations, but are asymmetric in the predator-prey equations, especially when the limit cycle of the kinetics is of large amplitude. In particular, there are two separate regions of stable waves in the travelling wave family for some parameter values in the predator-prey scenario. Our results also show the existence of a one-parameter family of travelling waves, but not necessarily a Hopf bifurcation, for all values of the diffusion coefficients. Simulations of the full partial differential equations reveals that varying the ratio of the diffusion coefficients can significantly change the properties of periodic travelling waves that arise from particular wave generation mechanisms, and our analysis of the travelling wave families assists in the understanding of these effects.  相似文献   

6.
The Hopf bifurcation in the presence of O(2) symmetry is considered. When the bifurcation breaks the symmetry, the critical imaginary eigenvalues have multiplicity two and generically there are two primary branches of periodic orbits which bifurcate simultaneously. In applications these correspond to rotating (traveling) waves and standing waves. Using equivariant singularity theory a classification of all such bifurcations up to and including codimension three is presented. No distinguished parameter is assumed. The universal unfoldings reveal the existence of both 2-tori and 3-tori; corresponding to quasiperiodic waves with two and three independent frequencies, respectively.  相似文献   

7.
We prove the existence of travelling wave solutions to a fifth order partial differential equation, which is a formal asymptotic approximation for water waves with surface tension. These travelling waves are arbitrarily small perturbations of solitary waves, but are not solitary waves themselves, because they approach small amplitude oscillations for large values of the independent variable. This result suggests that for Bond numbers less than one third, there are branches of travelling wave solutions to the water wave equations, which are perturbations of supercritical elevation solitary waves, and which bifurcate from Froude number one and Bond number one third.  相似文献   

8.
The nonlinear propagation of positron acoustic periodic(PAP) travelling waves in a magnetoplasma composed of dynamic cold positrons, superthermal kappa distributed hot positrons and electrons, and stationary positive ions is examined. The reductive perturbation technique is employed to derive a nonlinear Zakharov-Kuznetsov equation that governs the essential features of nonlinear PAP travelling waves. Moreover, the bifurcation theory is used to investigate the propagation of nonlinear PAP periodic travelling wave solutions. It is found that kappa distributed hot positrons and electrons provide only the possibility of existence of nonlinear compressive PAP travelling waves. It is observed that the superthermality of hot positrons, the concentrations of superthermal electrons and positrons, the positron cyclotron frequency, the direction cosines of wave vector k along the z-axis,and the concentration of ions play pivotal roles in the nonlinear propagation of PAP travelling waves. The present investigation may be used to understand the formation of PAP structures in the space and laboratory plasmas with superthermal hot positrons and electrons.  相似文献   

9.
In this paper, we employ the bifurcation method of dynamical systems to study the solitary waves and periodic waves of a generalized Boussinesq equations. All possible phase portraits in the parameter plane for the travelling wave systems are obtained. The possible solitary wave solutions, periodic wave solutions and cusp waves for the general Boussinesq type fluid model are also investigated.  相似文献   

10.
By applying the bifurcation theory of dynamical system to the generalized KP-BBM equation, the phase portraits of the travelling wave system are obtained. It can be shown that singular straight line in the travelling wave system is the reason why smooth periodic waves converge to periodic cusp waves. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact explicit parametric representations of the above waves are obtained.   相似文献   

11.
Summary An analytical model, simulating the frictionless response of the sea contained in a rotating, rectangular channel of arbitrary width to air pressure waves travelling at varying directions, is developed. Since planetary atmospheric waves are of primary interest as forcing agents, a solution is found for subinertial frequencies. For an atmospheric wave travelling along a channel whose width is close to the Rossby deformation radius, the model predicts sea levels and currents organized in two coastal waves and a geostrophic current system prevailing in mid-basin. The right-hand coastal wave is more pronounced than the left-hand wave. The structure is coupled to the atmospheric wave, and is resonantly driven when the phase velocity of the forcing wave approaches the Kelvin wave velocity. Along the coasts a quasi-static adjustment occurs under off-resonant conditions. When the atmospheric wave is moving across the channel at a sharp angle, the response of the sea is enhanced for the apparent along-channel velocities below those of free shallow-water waves, due to reflections at channel boundaries. For the atmospheric wave that travels at right angle across the channel, the resonance is not possible, and the sea level undershoots a simple inverted-barometer response. Both travelling and standing waves appear in the channel. In the narrow-channel limit only a standing wave remains, with a nodal line in the middle of the channel. In the central part of the channel the currents are almost geostrophic at very low frequencies. The model is used to interpret some aspects of the response of the Mediterranean Sea to planetary-scale atmospheric forcing. In particular, it is shown that resonant transfer of energy from the atmosphere to the sea is most unlikely, since planetary atmospheric waves are rather slow and they travel along the main axis of the Mediterranean basin.  相似文献   

12.
In this paper we investigate the properties and the linear stability of premixed combustion waves in a non-adiabatic thermal-diffusive model with a two-step chain-branching reaction mechanism. Here we focus only on the emergence of the pulsating instabilities, and the stability analysis is carried out for Lewis numbers for fuel greater than one, and various values of Lewis number for radicals. We consider the problem in two spatial dimensions to allow perturbations of a multidimensional nature. It is demonstrated that the flame speed as a function of the parameters is a double-valued C-shaped function, i.e. for a given set of parameter values there are either two solutions, fast and slow solution branches, propagating with different speed, or the combustion wave does not exist. The extinction of combustion waves occurs at finite values of the parameters and non-zero flame speed. The flame structure demonstrates a slow recombination regime behaviour with negligible fuel leakage for the fast solution branch away from the extinction condition. For parameter values close to the extinction condition and on the slow solution branch, the fuel leakage is significant and a fast recombination regime is observed. It is demonstrated that two types of instabilities emerge in the model: the uniform planar and the travelling instability. The slow solution branch is always unstable due to the uniform perturbations. The fast solution branch is either stable or loses stability due to the travelling or uniform perturbations. The switching between the onset of various regimes of instability is due to the bifurcation of co-dimension two. In the adiabatic limit this bifurcation is found for Lewis number for fuel equal to one, whereas in the non-adiabatic case it moves towards values above unity. The properties of the travelling instability are studied in detail.  相似文献   

13.
The transition from an axisymmetric stationary flow to three-dimensional time-dependent flows is carefully studied in a vertical cylinder partially heated from the side, with the aspect ratio A = 2 and Prandtl number Pτ=0.021. The flow develops from the steady toroidal pattern beyond the first instability threshold, breaks the axisymmetric state at a Rayleigh number near 2000, and transits to standing or travelling azimuthal waves. A new result is observed that a slightly unstable flow pattern of standing waves exists and will transit to stable travelling waves after a long time evolution. The onset of oscillations is associated with a supercritical Hopf bifurcation in a system with O(2) symmetry.  相似文献   

14.
In order to investigate further nonlinear asymmetric vibrations of a clamped circular plate under a harmonic excitation, we reexamine a primary resonance, studied by Yeo and Lee [Corrected solvability conditions for non-linear asymmetric vibrations of a circular plate, Journal of Sound and Vibration 257 (2002) 653-665] in which at most three stable steady-state responses (one standing wave and two traveling waves) are observed to exist. Further examination, however, tells that there exist at most five stable steady-state responses: one standing wave and four traveling waves. Two of the traveling waves lose their stability by Hopf bifurcation and have a sequence of period-doubling bifurcations leading to chaos. When the system has five attractors: three equilibrium solutions (one standing wave and two traveling waves) and two chaotic attractors (two modulated traveling waves), the basin boundaries of the attractors on the principal plane are obtained. Also examined is how basin boundaries of the modulated motions (quasi-periodic and chaotic motions) evolve as a system parameter varies. The basin boundaries of the modulated motions turn out to have the fractal nature.  相似文献   

15.
Based on the bifurcation and the idea that the solitary waves and shock waves of partial differential equations correspond respectively to the homoclinic and heteroclinic trajectories of nonlinear ordinary differential equations satisfied by the travelling waves,different conditions for the existence of solitary waves of a perturbed sine-Gordon equation are obtained.All of the corresponding approximate solitary wave solutions are given by integrating the derived approximate equations directly.  相似文献   

16.
In a chain of nonlinear oscillators, linearly coupled to their nearest neighbors, all travelling waves of small amplitude are found as solutions of finite dimensional reversible dynamical systems. The coupling constant and the inverse wave speed form the parameter space. The groundstate consists of a one-parameter family of periodic waves. It is realized in a certain parameter region containing all cases of light coupling. Beyond the border of this region the complexity of wave-forms increases via a succession of bifurcations. In this paper we give an appropriate formulation of this problem, prove the basic facts about the reduction to finite dimensions, show the existence of the ground states and discuss the first bifurcation by determining a normal form for the reduced system. Finally we show the existence of nanopterons, which are localized waves with a noncancelling periodic tail at infinity whose amplitude is exponentially small in the bifurcation parameter. Received: 10 September 1999 / Accepted: 15 December 1999  相似文献   

17.
In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.  相似文献   

18.
By using the bifurcation theory of planar dynamical systems and the qualitative theory of differential equations, we studied the dynamical behaviours and exact travelling wave solutions of the modified generalized Vakhnenko equation (mGVE). As a result, we obtained all possible bifurcation parametric sets and many explicit formulas of smooth and non-smooth travelling waves such as cusped solitons, loop solitons, periodic cusp waves, pseudopeakon solitons, smooth periodic waves and smooth solitons. Moreover, we provided some numerical simulations of these solutions.  相似文献   

19.
It is shown that within the manifold of exact solutions a system of reaction-diffusion equations admits only travelling waves with planar symmetry. A derivation of the generic form of approximate (asymptotic) cylindrical and spiral travelling periodic wave solutions is given. If an exact solution homogeneous in space and periodic in time is admitted by the system of reaction-diffusion equations, then travelling periodic spiral waves are admissble as approximate solutions. This is the theoretical explanation for the travelling periodic waves of chemical activity observed in recent experiments.  相似文献   

20.
用频谱分析法测量声光驻波调制器的调制度   总被引:1,自引:0,他引:1  
杜燕贻  殷宝璐 《光学学报》1995,15(3):61-366
从调制的基本概念出发,指出声光驻波调制器件为宽带频率调制型。讨论了调制度概念的成立条件和适用范围。理论上求出其成立条件为v<0.9(v=2πL△u/λ为衍射光强I(θ,t)中的自变量)。鉴于一般驻波型声光器件都是含有一定的行波成份,但行波声场和驻波声场在拉曼-奈斯衍射范围内衍射角均遵从sinθmi=土mλ/,故两者在空间上是无法分开的。文中给出了从频域上测量调制度M的一种新方法。并给出了零级和一般衍射光的测量值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号