首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use an alternative method to investigate the quantum criticality at zero and finite temperature using trace distance along with the density matrix renormalization group. It is shown that the average correlation measured by the trace distance between the system block and environment block in a DMRG sweep is able to detect the critical points of quantum phase transitions at finite temperature. As illustrative examples, we study spin-1 XXZ chains with uniaxial single-ion-type anisotropy and the Heisenberg spin chain with staggered coupling and external magnetic field. It is found that the trace distance shows discontinuity at the critical points of quantum phase transition and can be used as an indicator of QPTs.  相似文献   

2.
Quantum phase transitions occur when the ground state of a quantum system undergoes a qualitative change when an external control parameter reaches a critical value. Here, we demonstrate a technique for studying quantum systems undergoing a phase transition by coupling the system to a probe qubit. It uses directly the increased sensibility of the quantum system to perturbations when it is close to a critical point. Using an NMR quantum simulator, we demonstrate this measurement technique for two different types of quantum phase transitions in an Ising spin chain.  相似文献   

3.
By using the density matrix renormalization group (DMRG) and the self-consistent numerical method, we obtain a high spin ground state with localized spin density describing spin localization and the soliton describing the distortion of the lattice configurations along the main chain. Different electron-phonon interactions result in different configurations of solitons. When the electron-phonon coupling along the main chain is larger than a critical value , a transition from a single soliton-like distortion to a pair of soliton-like distortions along the main chain takes place. Such critical value depends mainly on the intersite Coulomb interactions. The spin density wave along the main chain is always localized around the center of soliton-like distortions. Received 2 July 2001 and Received in final form 25 September 2001  相似文献   

4.
We consider the ground-state properties of the s = 1/2 Ising chain in a transverse field which varies regularly along the chain having a period of alternation 2. Such a model, similarly to its uniform counterpart, exhibits quantum phase transitions. However, the number and the position of the quantum phase transition points depend on the strength of transverse field modulation. The behaviour in the vicinity of the critical field in most cases remains the same as for the uniform chain (i.e. belongs to the square-lattice Ising model universality class). However, a new critical behaviour may also arise. We report the results for critical exponents obtained partially analytically and partially numerically for very long chains consisting of a few thousand sites.  相似文献   

5.
We consider a model of two (fully) compact polymer chains, coupled through an attractive interaction. These compact chains are represented by Hamiltonian paths (HP), and the coupling favors the existence of common bonds between the chains. We use a (n=0 component) spin representation for these paths, and we evaluate the resulting partition function within a homogeneous saddle point approximation. For strong coupling (i.e. at low temperature), one finds a phase transition towards a “frozen” phase where one chain is completely adsorbed onto the other. By performing a Legendre transform, we obtain the probability distribution of overlaps. The fraction of common bonds between two HP, i.e. their overlap q, has both lower () and upper () bounds. This means in particular that two HP with overlap greater than coincide. These results may be of interest in (bio)polymers and in optimization problems. Received 4 December 1998 and Received in final form 10 March 1999  相似文献   

6.
The exactly solvable model of supersymmetric t - J chains (STJC) of correlated electrons with next-nearest-neighbour (NNN) interactions is proposed and studied. The model with interactions between nearest neighbours and NNN interactions in one chain can also be considered as a two-chain model with zigzag-like coupling between the chains. The NNN interaction (coupling between chains) causes the onset of additional Dirac seas for low-lying charge and/or spin excitations. These Dirac seas change the low-energy (conformal) behavior of the model. The filling of those seas depends on the values of the NNN coupling (interactions between chains), external magnetic field and applied voltage. We identify the new ground state phases which appear due to the NNN as incommensurate ones. The NNN coupling in the incommensurate phases induces spontaneous magnetization and/or spontaneous filling of the Dirac sea for charge excitations (“spontaneous charge ordering”). The onset of this order implies a first order quantum phase transition driven by the field with hysteresis phenomena. Received 13 September 2000  相似文献   

7.
The geometric phase of a central qubit coupling to the surrounding XY chain in a transverse field at finite temperature is studied in this Letter. An explicit analytical expression of the geometric phase for coupled qubit is obtained in the weak coupling limit when the surrounding spin chain is in a thermal equilibrium state. It is shown that the GP displays dramatic change around the quantum phase transition points of the spin chain at zero and a finite range of temperature by numerical analysis. The result reveals that the GP can be used as a tool to detect QPT when the spin chain system is at finite temperature.  相似文献   

8.
An investigation of the spin excitation spectrum of charge ordered (CO) NaV2O5 is presented. We discuss several different exchange models which may be relevant for this compound, namely in-line and zig-zag chain models with weak as well as strong inter-chain coupling and also a ladder model and a CO/MV (mixed valent) model. We put special emphasis on the importance of large additional exchange across the diagonals of V-ladders and the presence of exchange anisotropies on the excitation spectrum. It is shown that the observed splitting of transverse dispersion branches may both be interpreted as anisotropy effect as well as acoustic-optic mode splitting in the weakly coupled chain models. In addition we calculate the field dependence of excitation modes in these models. Furthermore we show that for strong inter-chain coupling, as suggested by recent LDA + U results, an additional high energy optical excitation appears and the spin gap is determined by anisotropies. The most promising CO/MV model predicts a spin wave dispersion perpendicular to the chains which agrees very well with recent results obtained by inelastic neutron scattering. Received 30 April 1999 and Received in final form 5 October 1999  相似文献   

9.
Nuclear magnetic resonance has been employed as a probe for the collective hydrocarbon chain dynamics in the organic–inorganic model biomembranes (CnH2n+1NH3)2SnCl6, undergoing order–disorder and conformational phase transitions. No anomalies were observed in the laboratory-frame spin–lattice relaxation measurements at the order–disorder phase transitions, whereas a discontinuity was manifest at the conformational phase transitions characteristic of a first-order phase transition. On the other hand, our rotating frame spin–lattice relaxation measurements revealed a low-frequency critical collective chain dynamics in the kilohertz regime associated with the order–disorder phase transition.  相似文献   

10.
Symmetry considerations and a direct, Hubbard-Stratonovich type, derivation are used to construct a replica field-theory relevant to the study of the spin glass transition of short range models in a magnetic field. A mean-field treatment reveals that two different types of transitions exist, whenever the replica number n is kept larger than zero. The Sherrington-Kirkpatrick critical point in zero magnetic field between the paramagnet and replica magnet (a replica symmetric phase with a nonzero spin glass order parameter) separates from the de Almeida-Thouless line, along which replica symmetry breaking occurs. We argue that for studying the de Almeida-Thouless transition around the upper critical dimension d = 6, it is necessary to use the generic cubic model with all the three bare masses and eight cubic couplings. The critical role n may play is also emphasized. To make perturbative calculations feasible, a new representation of the cubic interaction is introduced. To illustrate the method, we compute the masses in one-loop order. Some technical details and a list of vertex rules are presented to help future renormalisation-group calculations. Received 9 October 2001  相似文献   

11.
We study the interplay of topological excitations in stripe phases: charge dislocations, charge loops, and spin vortices. In two dimensions these defects interact logarithmically on large distances. Using a renormalization-group analysis in the Coulomb-gas representation of these defects, we calculate the phase diagram and the critical properties of the transitions. Depending on the interaction parameters, spin and charge order can disappear at a single transition or in a sequence of two transitions (spin-charge separation). These transitions are nonuniversal with continuously varying critical exponents. We also determine the nature of the points where three phases coexist.  相似文献   

12.
We present the renormalization group (RG) flow diagram of a spin-half antiferromagnetic chain with magnetic impurity and one altered link. In this two parameters (competing interactions) model, one can find the complex phase diagram with many interesting fixed points. There is no evidence of intermediate stable fixed point in weak coupling phase. It may arise at the strong coupling phase. Depending on the strength of couplings the phases correspond either to a decoupled spin with Curie law behavior or a logarithmically diverging impurity susceptibility as in the two channel Kondo problem.  相似文献   

13.
We study the role of Franck-Condon (F-C) principle in the dynamics of a central spin system, which is coupled to an Ising chain in transverse field. The transition process of energy levels caused by the excited central spin is studied to manifest the quantum critical effect through the Franck-Condon principle. The super-sensitivity of this quantum critical system is demonstrated clearly from the properties of Franck-Condon factors. We analytically show how spin numbers, coupling strength and order parameter of the Ising chain sensitively effect on the energy level populations in dynamical evolution near the critical point. This super-sensitivity and criticality are explicitly displayed in absorption spectrum.  相似文献   

14.
We investigate quantum phase transitions in XY spin models using Dzyaloshinsky-Moriya(DM) interactions. We identify the quantum critical points via quantum Fisher information and quantum coherence, finding that higher DM couplings suppress quantum phase transitions. However, quantum coherence(characterized by the l_1-norm and relative entropy) decreases as the DM coupling increases. Herein, we present both analytical and numerical results.  相似文献   

15.
Three-axes elastic neutron scattering measurements demonstrate that the five-fold modulated phase (phase 1/5) of BCCD exhibits under electric field a phase transition without change of superlattice periodicity. Through the monitoring of high-order satellite diffraction peaks as a function of electric field and temperature, the competition between this phase and neighboring polar phases with other periods has been characterized. At a threshold electric field of about 20 kV/cm, a rather abrupt redistribution of the satellite intensities of phase 1/5 is observed, without change of the corresponding primary modulation wave vector ( ⅕). A quantitative analysis of these intensity variations confirms the earlier conjecture based on dielectric experiments that the modulation essentially changes from a non-polar sequence 5up5down ( <5>) of polarized z-perpendicular layers of basic semicells, to a polar sequence 6up4down ( <64>). The transition is caused by the flip of the average polarization of one of the interface layers, and can then be described as a bounded discrete motion of the wall separating positive and negative microdomains within the five-fold unit cell. This type of polarization-flip phase transition had been detected and characterized in one-dimensional theoretical models as generalized Frenkel-Kontorova models or spin chains with elastic couplings, but had not been anticipated in theoretical analyses of BCCD, for which other phenomenological or microscopic models (as the ANNNI model) have been considered adequate. Only recently and in view of the experimental results reported here, we demonstrated, using a general phenomenological displacive model, the possibility of this type of transition in systems as BCCD [Phys. Rev. B 62, 11418 (2000)]. Phase diagrams with spin-flip phase transitions yield very peculiar phase diagrams with a checkerboard topological structure and self-similar features. In particular, they may present special critical points as the so-called upsilon points [J. Statistical Phys. 62, 45 (1991)]. BCCD may be then the first experimental system where they could be observed. Received 20 September 2001  相似文献   

16.
The Peierls and spin-Peierls phase transitions are studied in solids in which a structural instability is already present. It is found that the presence of this intrinsic mode can increase considerably the critical temperature. For small values of the critical temperature, the transition is of the BCS-type, like the Peierls (or spin-Peierls) phase transition, but with an effective electron (or spin)-phonon coupling constant renormalized by the anharmonicity and by the instability of the phonon. Numerical results are also presented for larger critical temperatures. Then the BCS behaviour is no longer observed.  相似文献   

17.
Antiferromagnetic Heisenberg spin chains with various spin values (S=1/2,1,3/2,2,5/2) are studied numerically with the quantum Monte-Carlo method. Effective spin S chains are realized by ferromagnetically coupling n=2S antiferromagnetic spin chains with S=1/2. The temperature dependence of the uniform susceptibility, the staggered susceptibility, and the static structure factor peak intensity are computed down to very low temperatures, . The correlation length at each temperature is deduced from numerical measurements of the instantaneous spin-spin correlation function. At high temperatures, very good agreement with exact results for the classical spin chain is obtained independent of the value of S. For the S=2 chain which has a gap , the correlation length and the uniform susceptibility in the temperature range are well predicted by the semi-classical theory of Damle and Sachdev. Received: 23 December 1997 / Revised and Accepted: 11 March 1998  相似文献   

18.
Motivated by puzzling characteristics of spin-glass transitions widely observed in pyrochlore-based frustrated materials, we investigate the effects of coupling to local lattice distortions in a bond-disordered antiferromagnet on the pyrochlore lattice by extensive Monte Carlo simulations. We show that the spin-glass transition temperature T(f) is largely enhanced by the spin-lattice coupling and, furthermore, becomes almost independent of Δ in a wide range of the disorder strength Δ. The critical property of the spin-glass transition is indistinguishable from that of the canonical Heisenberg spin glass in the entire range of Δ. These peculiar behaviors are ascribed to a modification of the degenerate manifold from a continuous to semidiscrete one by spin-lattice coupling.  相似文献   

19.
卓伟  王玉鹏 《中国物理快报》2007,24(12):3320-3321
The boundary quantum entanglement for the s = 1/2 X X Z spin chain with boundary impurities is studied via the density matrix renormalization group (DMRG) method. It is shown that the entanglement entropy of the boundary bond (the impurity and the chain spin next to it) behaves differently in different phases. The relationship between the singular points of the boundary entropy and boundary quantum critical points is discussed.  相似文献   

20.
We consider branching Markov chains on a countable set. We give a necessary and sufficient condition in terms of the transition kernel of the underlying Markov chain to have two phase transitions. We compute the critical values. We apply this result to prove that asymmetric branching random walks onZ have two phase transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号