首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cp*(2)ZrH(2) (1) (Cp* = pentamethylcyclopentadienyl) reacts with perfluoropropene (2) to give Cp*(2)ZrHF (3) and hydrodefluorinated products under very mild conditions. Initial C-F bond activation occurs selectively at the vinylic terminal position of the olefin to exchange fluorine for hydrogen. Subsequent hydrodefluorination leads to the formation of the n-propylhydride complex Cp*(2)ZrH(CH(2)CH(2)CH(3)), which can be cleaved with dihydrogen to give propane and 1. A theoretical study of the reaction of Cp*(2)ZrH(2) (Cp* = cyclopentadienyl) and CF(2)[double bond]CF(CF(3)) has been undertaken. Several mechanisms have been examined in detail using DFT(B3PW91) calculations and are discussed for this H/F exchange: (a) internal olefin insertion/beta-fluoride elimination, (b) external olefin insertion/beta-fluoride elimination, and (c) F/H metathesis from either an inside or outside approach. Of these, the first case is found to be energetically preferred. Selective defluorination at the terminal carbon has been shown to be favored over defluorination at the substituted and allylic carbons.  相似文献   

2.
Cp*2ZrH2 (1) (Cp*: pentamethylcyclopentadienyl) reacts with cyclic perfluorinated olefins to give Cp*2ZrHF (2) and hydrodefluorinated products under very mild conditions. Initial C-F bond activation occurs selectively at the vinylic positions of the cycloolefin to exchange fluorine for hydrogen. Several mechanisms are discussed for this H/F exchange: (a) olefin insertion/β-fluoride elimination, (b) olefin insertion/α-fluoride elimination, and (c) hydride/fluoride σ-bond metathesis. Following H/F σ-bond metathesis exchange of both vinylic C-F bonds of perfluorocyclobutene, 1 then reacts with allylic C-F bonds by insertion/β-fluoride elimination. A similar sequence is observed with perfluorocyclopentene. Cp*2ZrHF reacts selectively with vinylic C-F bonds of perfluorocyclobutene to give 3,3,4,4-tetrafluorocyclobutene and Cp*2ZrF2 without further hydrodefluorination occurring. In the presence of excess 1 and H2, perfluorocyclobutene and perfluorocyclopentene are reduced to cyclobutane and cyclopentane in 46% and 16% yield, respectively. DFT calculations exclude the pathway by way of the olefin insertion/α-fluoride elimination and suggest that the pathway by way of hydride/fluoride σ-bond metathesis is preferred.  相似文献   

3.
Reaction of [Cp*Ir(micro-H)](2) (5) (Cp* = eta(5)-C(5)Me(5)) with bis(dimethylphosphino)methane (dmpm) gives a new neutral diiridium complex [(Cp*Ir)(2)(micro-dmpm)(micro-H)(2)] (3). Treatment of 3 with methyl triflate at -30 degrees C results in the formation of [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Me)(IrCp*)][OTf] (6). Warming a solution of above 0 degrees C brings about predominant generation of 32e(-) Ir(II)-Ir(II) species [(Cp*Ir)(micro-dmpm)(micro-H)(IrCp*)][OTf] (7). Further heating of the solution of 7 up to 30 degrees C for 14 h leads to quantitative formation of a new complex [(Cp*Ir)(H)(micro-Me(2)PCH(2)PMeCH(2))(micro-H)(IrCp*)][OTf] (8), which is formed by intramolecular oxidative addition of the methyl C-H bond of the dmpm ligand. Intermolecular C-H bond activation reactions with 7 are also examined. Reactions of 7 with aromatic molecules (benzene, toluene, furan, and pyridine) at room temperature result in the smooth sp(2) C-H activation to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Ar)(IrCp*)][OTf] (Ar = Ph (9); Ar = m-Tol (10a) or p-Tol (10b); Ar = 2-Fur (11)) and [(Cp*Ir)(H)(micro-dmpm)(micro-C(5)H(4)N)(H)(IrCp*)][OTf] (12), respectively. Complex also reacts with cyclopentene at 0 degrees C to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(1-cyclopentenyl)(IrCp*)][OTf] (13). Structures of 3, 8 and 12 have been confirmed by X-ray analysis.  相似文献   

4.
Reactions of [(Cp*Ir)2(mu-dmpm)(mu-H)2]2+ (1) with NaOtBu in aromatic solvent at room temperature give [(Cp*Ir)(H)(mu-dmpm)(mu-H)(Cp*Ir)(Ar)]+ [Ar = Ph (3), p-Tol (4a), m-Tol (4b), 2-furanyl (5a), 3-furanyl (5b)] via intermolecular aromatic C-H activation. Treatment of [(Cp*Ir)2(mu-dppm)(mu-H)2]2+ (2) with base (Et2NH) results in intramolecular C-H activation of the phenyl group in the dppm ligand to give [(Cp*Ir)(H){mu-PPh(C6H4)CH2PPh2}(mu-H)(Cp*Ir)]+ (6). The structures of 3, 5a, and 6 have been determined by X-ray diffraction methods.  相似文献   

5.
Cp(2)ZrH(2) (1) (Cp = pentamethylcyclopentadienyl) reacts with vinylic carbon-fluorine bonds of CF(2)=CH(2) and 1,1-difluoromethylenecyclohexane (CF(2)=C(6)H(10)) to afford Cp(2)ZrHF (2) and hydrodefluorinated products. Experimental evidence suggests that an insertion/beta-fluoride elimination mechanism is occurring. Complex 1 reacts with allylic C-F bonds of the olefins, CH(2)=CHCF(3), CH(2)=CHCF(2)CF(2)CF(2)CF(3), and CH(2)=C(CF(3))(2) to give preferentially 2 and CH(3)-CH=CF(2), CH(3)-CH=CF-CF(2)CF(2)CF(3), and CF(2)=C(CF(3))(CH(3)), respectively, by insertion/beta-fluoride elimination. In the reactions of 1 with CH(2)=CHCF(3) and CH(2)=CHCF(2)CF(2)CF(2)CF(3), both primary and secondary alkylzirconium olefin insertion intermediates were observed in the (1)H and (19)F NMR spectra at low temperature. A deuterium labeling study revealed that more than one olefin-dihydride complex is likely to exist prior to olefin insertion. In the presence of excess 1 and H(2), CH(2)=CHCF(3) and CH(2)=CHCF(2)CF(2)CF(2)CF(3) are reduced to propane and (E)-CH(3)CH(2)CF=CFCF(2)CF(3), respectively.  相似文献   

6.
Thermolysis of Cp*W(NO)(CH2CMe3)(eta(3)-CH2CHCHMe) (1) at ambient temperatures leads to the loss of neopentane and the formation of the eta(2)-diene intermediate, Cp*W(NO)(eta(2)-CH2=CHCH=CH2) (A), which has been isolated as its 18e PMe3 adduct. In the presence of linear alkanes, A effects C-H activations of the hydrocarbons exclusively at their terminal carbons and forms 18e Cp*W(NO)(n-alkyl)(eta(3)-CH2CHCHMe) complexes. Similarly, treatments of 1 with methylcyclohexane, chloropentane, diethyl ether, and triethylamine all lead to the corresponding terminal C-H activation products. Furthermore, a judicious choice of solvents permits the C-H activation of gaseous hydrocarbons (i.e., propane, ethane, and methane) at ambient temperatures under moderately elevated pressures. However, reactions between intermediate A and cyclohexene, acetone, 3-pentanone, and 2-butyne lead to coupling between the eta(2)-diene ligand and the site of unsaturation on the organic molecule. For example, Cp*W(NO)(eta(3),eta(1)-CH2CHCHCH2C(CH2CH3)2O) is formed exclusively in 3-pentanone. When the site of unsaturation is sufficiently sterically hindered, as in the case of 2,3-dimethyl-2-butene, C-H activation again becomes dominant, and so the C-H activation product, Cp*W(NO)(eta(1)-CH2CMe=CMe2)(eta(3)-CH2CHCHMe), is formed exclusively from the alkene and 1. All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by X-ray crystallographic analyses. Finally, the newly formed alkyl ligands may be liberated from the tungsten centers in the product complexes by treatment with iodine. Thus, exposure of a CDCl3 solution of the n-pentyl allyl complex, Cp*W(NO)(n-C5H11)(eta(3)-CH2CHCHMe), to I2 at -60 degrees C produces n-C5H11I in moderate yields.  相似文献   

7.
The ionic metallocene complexes [Cp*(2)M][BPh(4)] (Cp* = C(5)Me(5)) of the trivalent 3d metals Sc, Ti, and V were synthesized and structurally characterized. For M = Sc, the anion interacts weakly with the metal center through one of the phenyl groups, but for M = Ti and V, the cations are naked. They each contain one strongly distorted Cp* ligand, with one (V) or two (Ti) agostic C-H...M interactions involving the Cp*Me groups. For Sc and Ti, these Lewis acidic species react with fluorobenzene and 1,2-difluorobenzene to yield [Cp*(2)M(kappaF-FC(6)H(5))(n)][BPh(4)] (M = Sc, n = 2; M = Ti, n = 1) and [Cp*(2)M(kappa(2)F-1,2-F(2)C(6)H(4))][BPh(4)], the first examples of kappaF-fluorobenzene and kappa(2)F-1,2-difluorobenzene adducts of transition metals. With the perfluorinated anion [B(C(6)F(5))(4)](-), both Sc and Ti form [Cp*(2)M(kappa(2)F-C(6)F(5))B(C(6)F(5))(3)] contact ion pairs. The nature of the metal-fluoroarene interaction was studied by density functional theory (DFT) calculations and by comparison with the corresponding tetrahydrofuran (THF) adducts and was found to be predominantly electrostatic for all metals studied.  相似文献   

8.
The tetraphenylborate salt of the decamethyl titanocene cation, [Cp*2Ti][BPh4] (1, Cp* = C5Me5), was prepared by reaction of Cp*2TiH with [Cp2Fe][BPh4] and by reaction of Cp*2TiMe with [PhNMe2H][BPh4]. The crystal structure of 1 shows that the Cp*2Ti cation has a bent metallocene structure with agostic interactions with the metal center of two adjacent methyl groups on one of the Cp* ligands. Compound 1 reacts readily with THF to give the adduct [Cp*2Ti(THF)][BPh4] (2). In fluorobenzene, 1 forms the eta1-fluorobenzene adduct [Cp*2Ti(eta1-FC6H5)][BPh4] (3), which was structurally characterized. In contrast to the thermal stability of 3, addition of alpha,alpha,alpha-trifluorotoluene to either 1 or 2 results in C-F activation to give Cp*2TiF2 and PhCF2CF2Ph as the main products. This reactivity toward benzylic C-F bonds is also reflected in the reactivity toward the fluorinated borate anions [B(C6F5)4]- and {B(3,5-(CF3)2C6H3]4}-: reaction of Cp*2TiMe with their [PhNMe2H]+ salts results in a stable complex for the former anion, whereas rapid C-F activation is observed for the latter.  相似文献   

9.
Addition of 1.0 equiv of Ph3SiH to [Cp*(PMe3)Rh(Me)(CH2Cl2)]+BAr'4- (1) resulted in release of methane and quantitative formation of [Cp*(PMe3)Rh(SiPh3)(CH2Cl2)]+BAr'4- (2). Subsequent addition of 1.0 equiv of MeCN to 2 caused immediate displacement of dichloromethane to form the eta1-nitrile adduct [Cp*(PMe3)Rh(SiPh3)(NCMe)]+BAr'4- (3). Upon standing at room-temperature overnight, complex 3 converted quantitatively to another product which has been characterized as the C-C activation product, [Cp*(PMe3)Rh(Me)(CNSiPh3)]+BAr'4- (5). Addition of other nitrile substrates (R-CN, R = Ph, (4-CF3)Ph, (4-MeO)Ph, iPr, tBu) to 2 also resulted in C-C activation of the R-CN bond to form [Cp*(PMe3)Rh(R)(CNSiPh3)]+BAr'4-. Evidence for an eta2-iminoacyl intermediate complex, [Cp*(PMe3)Rh(eta2-C(R)=N(SiPh3)]+BAr'4-, is also presented.  相似文献   

10.
The molybdenum nitrosyl complex Cp*Mo(NO)(CH2CMe3)(C6H5) reacts at room temperature via elimination of neopentane or benzene to form the transient species Cp*Mo(NO)(=CHCMe3) and Cp*Mo(NO)(eta2-C6H4). These reactive intermediates effect the intermolecular activation of hydrocarbon C-H bonds via the reverse of the transformations by which they are generated. Thermolysis of Cp*Mo(NO)(CH2CMe3)(C6H5) in pyridine yields the adducts Cp*Mo(NO)(=CHCMe3)(NC5H5) and Cp*Mo(NO)(eta2-C6H4)(NC5H5), and the benzyne complex has been characterized by X-ray diffraction.  相似文献   

11.
The reaction of Cp2Hf(SiMes2H)Me (1) with B(C6F5)3 produces zwitterionic Cp2Hf(eta2-SiHMes2)(mu-Me)B(C6F5)3 (2), which is stable for >8 h at -40 degrees C in toluene-d8. Spectroscopic data provide evidence for an unusual alpha-agostic Si-H interaction in 2. At room temperature, 2 reacts with the C-H bonds of aromatic hydrocarbons such as benzene and toluene to produce Cp2Hf(Ph)(mu-Me)B(C6F5)3 (3), isomers of Cp2Hf(C6H4Me)(mu-Me)B(C6F5)3 (4-6), and Cp2Hf(CH2Ph)(mu-Me)B(C6F5)3 (7), respectively. The reaction involving benzene is first-order in both 2 and benzene; rate = k[2][C6H6]. Mechanistic data including activation parameters (DeltaH = 19(1) kcal/mol; DeltaS = -17(3) eu), a large primary isotope effect of 6.9(7), and the experimentally determined rate law are consistent with a mechanism involving a concerted transition state for C-H bond activation.  相似文献   

12.
To investigate the potential role of Sm-Ph species as intermediates in the samarium-catalyzed redistribution of PhSiH3 to Ph2SiH2 and SiH4, the samarium phenyl complex [Cp*2SmPh]2 (1) was prepared by oxidation of Cp2*Sm (2) with HgPh2. Compound 1 thermally decomposes to yield benzene and the phenylene-bridged disamarium complex Cp*2Sm(mu-1,4-C6H4)SmCp*2 (3). This decomposition reaction appears to proceed through dissociation of 1 into monomeric Cp*2SmPh species which then react via unimolecular and bimolecular pathways, involving rate-limiting Cp* metalation and direct C-H activation, respectively. The observed rate law for this process is of the form: rate = k1[1] + k2[1]2. Complex 1 efficiently transfers its phenyl group to PhSiH3, with formation of Ph2SiH2 and [Cp*2Sm(mu-H)]2 (4). Quantitative Si-C bond cleavage of C6F5SiH3 is effected by the samarium hydride complex 4, yielding silane and [Cp*2Sm(mu-C6F5)]2 (5). In contrast, Si-H activation takes place upon reaction of 4 with o-MeOC6H4SiH3, affording the samarium silyl species [structure: see text] Cp*2SmSiH2(o-MeOC6H4) (7). Complex 7 rapidly decomposes to [Cp*2Sm(mu-o-MeOC6H4)]2 (6) and other samarium-containing products. Compounds 5 and 6 were prepared independently by oxidation of 2 with Hg(C6F5)2 and Hg(o-MeOC6H4)2, respectively. The mechanism of samarium-mediated redistribution at silicon, and chemoselectivity in sigma-bond metathesis reactions, are discussed.  相似文献   

13.
Thermolysis of [Cp*P{W(CO)5}2] (1) in the presence of [{CpMo(CO)2}2] leads to the novel complexes [{(CO)2Cp*W}{CpMo(CO)2}(micro,eta2:eta1:eta1-P2{W(CO)5}2)] (6; Cp=eta5-C5H5, Cp*=eta5-C5Me5), [{(micro-O)(CpMoWCp*)W(CO)4}{micro3-PW(CO)5}2] (7), [{CpMo(CO)2}2{Cp*W(CO)2}{micro3-PW(CO)5}] (8) and [{CpMo(CO)2}2{Cp*W(CO)2}(micro3-P)] (9). The structural framework of the main products 8 and 9 can be described as a tetrahedral Mo2WP unit that is formed by a cyclisation reaction of [{CpMo(CO)2}2] with an [Cp*(CO)2W[triple chemical bond]P-->W(CO)5] intermediate containing a W--P triple bond and subsequent metal-metal and metal-phosphorus bond formation. Photolysis of 1 in the presence of [{CpMo(CO)2}2] gives 8, 9 and phosphinidene complex [(micro3-PW(CO)5){CpMo(CO)2W(CO)5}] (10), in which the P atom is in a nearly trigonal-planar coordination environment formed by one {CpMo(CO)2} and two {W(CO)5} units. Comprehensive structural and spectroscopic data are given for the products. The reaction pathways are discussed for both activation procedures, and DFT calculations reveal the structures with minimum energy along the stepwise Cp* migration process under formation of the intermediate [Cp*(CO)2W[triple chemical bond]P-->W(CO)5].  相似文献   

14.
Reduction of Cp*(2)TaCl(2) with sodium amalgam in THF under a nitrogen atmosphere results in the formation of the novel complex (Cp*(2)TaCl)(2)(micro-N(2)). This dinuclear complex containing a micro-eta(1):eta(1) dinitrogen bridge has been characterized by NMR and X-ray crystallography. The complex possesses a C(2)-symmetric structure with each Ta bound to diastereotopic Cp* rings and chloride in addition to the micro-N(2) bridge. The Ta-N and N-N distances of 1.885(10) and 1.23(1) A, respectively, suggest modest reduction of the dinitrogen moiety. The two Cp* resonances on each Ta center remain inequivalent in solution, even up to 80 degrees C. Addition of hydrogen results in the formation of two isomers of the dihydride complex Cp*(2)TaH(2)Cl. Under parahydrogen, polarized resonances are observed for the unsymmetrical isomer with adjacent hydrides as the product of H(2) oxidative addition. The symmetric isomer of Cp*(2)TaH(2)Cl also forms, most likely by isomerization of the unsymmetrical kinetic isomer. The reactivity of (Cp*(2)TaCl)(2)(micro-N(2)) was compared to that of the related monomer, Cp*(2)TaCl(THF). The THF adduct yields the same hydrogen addition products, but the reaction is much more facile than for the nitrogen dimer, indicative of the structural integrity of the micro-N(2) complex.  相似文献   

15.
Reduction of Cp*WCl4 afforded the metalated complex (eta6-C5Me4CH2)(dmpe)W(H)Cl (1) (Cp* = C5Me5, dmpe = 1,2-bis(dimethylphosphino)ethane). Reactions with CO and H(2) suggested that 1 is in equilibrium with the 16-electron species [Cp(dmpe)WCl], and 1 was also shown to react with silanes R2SiH2 (R2 = Ph2 and PhMe) to give the tungsten(IV) silyl complexes Cp*(dmpe)(H)(Cl)W(SiHR2) (6a, R2 = Ph2; 6b, R2 = PhMe). Abstraction of the chloride ligand in 1 with LiB(C6F5)4 gave a reactive species that features a doubly metalated Cp ligand, [(eta7-C5Me3(CH2)2)(dmpe)W(H)2][B(C6F5)4] (4). In its reaction with dinitrogen, 4 behaves as a synthon for the 14-electron fragment [Cp*(dmpe)W]+, to give the dinuclear dinitrogen complex ([Cp*(dmpe)W]2(micro-N2)) [B(C6F5)4]2 (5). Hydrosilanes R2SiH2 (R2 = Ph2, PhMe, Me2, Dipp(H); Dipp = 2,6-diisopropylphenyl) were shown to react with 4 in double Si-H bond activation reactions to give the silylene complexes [Cp*(dmpe)H2W = SiR2][B(C6F5)4] (8a-d). Compounds 8a,b (R2 = Ph2 and PhMe, respectively) were also synthesized by abstraction of the chloride ligands from silyl complexes 6a,b. Dimethylsilylene complex 8c was found to react with chloroalkanes RCl (R = Me, Et) to liberate trialkylchlorosilanes RMe2SiCl. This reaction is discussed in the context of its relevance to the mechanism of the direct synthesis for the industrial production of alkylchlorosilanes.  相似文献   

16.
The reaction of 6 equivalents of GaCp*(Cp*= pentamethylcyclopentadienyl) with [{Cp*RhCl2}2] yields the complex [Cp*Rh(GaCp*)3(Cl)2] (1) exhibting a cage-like intermetallic RhGa3 center with Ga-Cl-Ga bridges. Treatment of this complex with GaCl3 gives the Lewis acid-base adduct [Cp*Rh(GaCp*)2(GaCl3)]. (2) Reaction of [{Cp*RhCl2}2] with understoichiometric amounts of E(I)Cp*(E = Al, Ga, In) leads to a variety of products strongly dependent on the molecular ratio of the reactants. Thus, the reduction of [{Cp*RhCl2}2] with one equivalent of E(I)Cp*(E = Al, Ga, In) gives the RhII dimer [{Cp*RhCl}2]. The insertion of 3 equivalents of InCp* into the Rh-Cl bonds of [{Cp*RhCl2}2] yields the salt [Cp*2Rh]+[Cp*Rh(InCp*){In2Cl4(mu2-Cp*)}]- (3), the anion exhibiting an intermetallic RhIn(3) center with an intramolecularly bridging Cp* ring. The reaction of [{Cp*RhCl}2] with Cp*Ga yields various insertion products. In trace amount the "all hydrocarbon" cluster complex [(RhCp*)2(GaCp*)3] (6) is obtained. The corresponding ethylene containing cluster complex [{RhCp(GaCp*)(C2H4)}2] (7) can be prepared by treatment of [RhCp*(CH3CN)(C2H4)] with GaCp*.  相似文献   

17.
Reaction of RhCp*(L)(CH(3))(2)(L = pyridine, dmso) with equimolar amounts of GaCp* at 60 degrees C quantitatively leads to the zwitterionic species [Cp*Rh(CpMe(4)GaMe(3))]. [Cp*Rh(CH(3))(2)(GaCp*)] could be isolated and identified as an intermediate in this reaction.  相似文献   

18.
The scandium alkyl Cp*(2)ScCH(2)CMe(3) (2) was synthesized by the addition of a pentane solution of LiCH(2)CMe(3) to Cp*(2)ScCl at low temperature. Compound 2 reacts with the C-H bonds of hydrocarbons including methane, benzene, and cyclopropane to yield the corresponding hydrocarbyl complex and CMe(4). Kinetic studies revealed that the metalation of methane proceeds exclusively via a second-order pathway described by the rate law: rate = k[2][CH(4)] (k = 4.1(3) x 10(-4) M(-1)s(-1) at 26 degrees C). The primary inter- and intramolecular kinetic isotope effects (k(H)/k(D) = 10.2 (CH(4) vs CD(4)) and k(H)/k(D) = 5.2(1) (CH(2)D(2)), respectively) are consistent with a linear transfer of hydrogen from methane to the neopentyl ligand in the transition state. Activation parameters indicate that the transformation involves a highly ordered transition state (DeltaS++ = -36(1) eu) and a modest enthalpic barrier (DeltaH++ = 11.4(1) kcal/mol). High selectivity toward methane activation suggested the participation of this chemistry in a catalytic hydromethylation, which was observed in the slow, Cp*(2)ScMe-catalyzed addition of methane across the double bond of propene to form isobutane.  相似文献   

19.
Transition metal fluoride complexes are of interest because they are potentially useful in a multitude of catalytic applications, including C-F bond activation and fluorocarbon functionalization. We report the first crystallographically characterized examples of molecular iron(II) fluorides: [L(Me)Fe(mu-F)]2 (1(2)) and L(tBu)FeF (2) (L = bulky beta-diketiminate). These complexes react with donor molecules (L'), yielding trigonal-pyramidal complexes L(R)FeF(L'). The fluoride ligand is activated by the Lewis acid Et2O.BF3, forming L(tBu)Fe(OEt2)(eta1-BF4) (3), and is also silaphilic, reacting with silyl compounds such as Me3SiSSiMe3, Me3SiCCSiMe3, and Et3SiH to give new thiolate L(tBu)FeSSiMe3 (4), acetylide L(tBu)FeCCSiMe3 (5), and hydride [L(Me)Fe(mu-H)]2 (6(2)) complexes. The hydrodefluorination (HDF) of perfluorinated aromatic compounds (hexafluorobenzene, pentafluoropyridine, and octafluorotoluene) with a silane R3SiH (R3 = (EtO)3, Et3, Ph3, (3,5-(CF3)2C6H3)Me2) is catalyzed by addition of an iron(II) fluoride complex, giving mainly the singly hydrodefluorinated products (pentafluorobenzene, 2,3,5,6-tetrafluoropyridine, and alpha,alpha,alpha,2,3,5,6-heptafluorotoluene, respectively) in up to five turnovers. These catalytic perfluoroarene HDF reactions proceed with activation of the C-F bond para to the most electron-withdrawing group and are dependent on the degree of fluorination and solvent polarity. Kinetic studies suggest that hydride generation is the rate-limiting step in the HDF of octafluorotoluene, but the active intermediate is unknown. Mechanistic considerations argue against oxidative addition and outer-sphere electron transfer pathways for perfluoroarene HDF. Fluorinated olefins are also hydrodefluorinated (up to 10 turnovers for hexafluoropropene), most likely through a hydride insertion/beta-fluoride elimination mechanism. Complexes 1(2) and 2 thus provide a rare example of a homogeneous system that activates C-F bonds without competitive C-H activation and use an inexpensive 3d transition metal.  相似文献   

20.
The well-defined oxidative addition of the vinylic sp(2) C-H bond of dimethyl fumarate is mediated by the cobalt triple decker complex [(Cp*Co)(2)-μ-(η(4) : η(4)-toluene)] (1) at ambient temperature, affording the dinuclear, bridging cobalt hydride, fumaryl compound (2). The C-H activation product has been characterized by mass spectrometry, NMR spectroscopy, and X-ray crystallography. Computational studies of 2 support asymmetric bonding interactions between the two metal centres and the bridging hydride/fumaryl fragments. Monitoring the reaction of dimethyl fumarate with 1 by (1)H NMR spectroscopy allows observation of intermediate [Cp*Co(MeO(2)CCH=CHCO(2)Me)](n) (n = 1 or 2) (3). Addition of 4 equivalents of dimethyl fumarate to 1 results in rapid formation of the bis(ligand) adduct Cp*Co(η(2)-MeO(2)CCH=CHCO(2)Me)(2) (5). Reversibility of the C-H activation was probed by reaction of additional dimethyl fumarate with 2, suggesting ligand induced reductive elimination is possible under ambient conditions. Reaction between 2 and strong σ or π ligands, such as PMe(3) or CO, affords the corresponding Cp*Co(η(2)-MeO(2)CCH=CHCO(2)Me)(L) (L = PMe(3) (7); L = CO (8)) complexes when heated, demonstrating the ability of 2 to undergo two electron redox processes. Further evidence for reversible C-H activation is provided by the isomerization of dimethyl maleate to the corresponding fumarate using 2, suggesting the complex can serve as a source of Co(I) under the appropriate catalytic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号