首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A series of linear-type Co(III)Pt(II)Co(III) trinuclear complexes composed of C(2)-cis(S)-[Co(aet)(2)(en)](+) (aet = 2-aminoethanethiolate) and/or Lambda(D)-trans(N)-[Co(D-pen-N,O,S)(2)](-) (D-pen = D-penicillaminate) were newly prepared, and their chiral behavior, which is markedly different from that of the corresponding Co(III)Pd(II)Co(III) complexes, is reported. The 1:1 reaction of an S-bridged Co(III)Ni(II)Co(III) trinuclear complex, [Ni[Co(aet)(2)(en)](2)]Cl(4), with K(2)[PtCl(4)] in water gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(2)(en)](2)]Cl(4) ([1]Cl(4)), while the corresponding 1:2 reaction produced an S-bridged Co(III)Pt(II) dinuclear complex, [PtCl(2)[Co(aet)(2)(en)]]Cl ([2]Cl). Complex [1](4+) formed both racemic (DeltaDelta/LambdaLambda) and meso (DeltaLambda) forms, which were separated and optically resolved by cation-exchange column chromatography. An optically active S-bridged Co(III)Pt(II)Co(III) trinuclear complex having the pseudo LambdaLambda configuration, Lambda(D)Lambda(D)-[Pt[Co(D-pen-N,O,S)(2)](2)](0) (Lambda(D)Lambda(D)-[3]), was also prepared by reacting Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] with K(2)[PtCl(4)] in a ratio of 2:1 in water. Treatment of the racemic Delta/Lambda-[2]Cl with Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] in a ratio of 1:1 in water led to the formation of LambdaLambda(D)- and DeltaLambda(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,O,S)(2)]](2+) (LambdaLambda(D)- and DeltaLambda(D)-[4](2+)) and DeltaDelta(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,S)(2)(H(2)O)(2)]](2+) (DeltaDelta(D)-[4'](2+)), besides trace amounts of Lambda(D)Lambda(D)-[3] and DeltaDelta- and DeltaLambda-[1](4+). These Co(III)Pt(II)Co(III) complexes were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses for DeltaDelta/LambdaLambda-[1]Cl(4), DeltaLambda-[1]Cl(4), and DeltaLambda(D)-[4]Cl(2). Crystal data: DeltaDelta/LambdaLambda-[1]Cl(4).6H(2)O, monoclinic, space group C2/c with a = 14.983(3) A, b = 19.857(4) A, c = 12.949(3) A, beta = 113.51(2) degrees, V = 3532(1) A(3), Z = 4; DeltaLambda-[1]Cl(4).3H(2)O, orthorhombic, space group Pbca with a = 14.872(3) A, b = 14.533(3) A, c = 14.347(2) A, V = 3100(1) A(3), Z = 4; DeltaLambda(D)-[4]Cl(2).6H(2)O, monoclinic, space group P2(1) with a = 7.3836(2) A, b = 20.214(1) A, c = 10.622(2) A, beta = 91.45(1) degrees V = 1682.0(4) A(3), Z = 2.  相似文献   

2.
The reaction of fac(S)-[Co(aet)(3)](aet = aminoethanethiolate) with [PdCl(4)](2-) in a 2:1 ratio in water gave an S-bridged Co(III)Pd(II)Co(III) trinuclear complex composed of two mer(S)-[Co(aet)(3)] units, [Pd[Co(aet)(3)](2)](2+)([1](2+)). In [1](2+), each of the two mer(S)-[Co(aet)(3)] units is bound to a square-planar Pd(II) ion through two of three thiolato groups, leaving two non-bridging thiolato groups at the terminal. Of two geometrical forms, syn and anti, possible for [Pd[Co(aet)(3)](2)](2+), which arise from the difference in arrangement of two terminal non-bridging thiolato groups, [1](2+) afforded only the syn form. A similar reaction of fac(S)-[Co(aet)(3)] with [PtCl(4)](2-) or trans-[PtCl(2)(NH(3))(2)] produced an analogous Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(3)](2)](2+)([2](2+)), but both the syn and anti forms were formed for [2](2+). Complexes [1](2+) and syn- and anti-[2](2+), which exclusively exist as a racemic(DeltaDelta/LambdaLambda) form, were successfully optically resolved with use of [Sb(2)(R,R-tartrato)(2)](2-) as the resolving agent. The reaction of syn-[2](2+) with [AuCl[S(CH(2)CH(2)OH)(2)]] led to the formation of an S-bridged Co(III)(4)Pt(II)(2)Au(I)(2) octanuclear metallacycle, [Au(2)[Pt[Co(aet)(3)](2)](2)](6+)([3](6+)), while the corresponding reaction of anti-[2](2+) afforded a different product ([[4](3+)](n)) that is assumed to have a polymeric structure in [[Au[Pt[Co(aet)(3)](2)]](3+)](n).  相似文献   

3.
The heterotrinuclear complexes trans- and cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) are unprecedented examples of mixed valence complexes based on ferrocyanide bearing three different metal centers. These complexes have been assembled in a stepwise manner from their {trans-III-L(14S)Co(III)}, {cis-VI-L(15)Rh(III)}, and {Fe(II)(CN)(6)} building blocks. The preparative procedure follows that found for other known discrete assemblies of mixed valence dinuclear Cr(III)/Fe(II) and polynuclear Co(III)/Fe(II) complexes of the same family. A simple slow substitution process of [Fe(II)(CN)(6)](4-) on inert cis-VI-[Rh(III)L(15)(OH)](2+) leads to the preparation of the new dinuclear mixed valence complex [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) with a redox reactivity that parallels that found for dinuclear complexes from the same family. The combination of this dinuclear precursor with mononuclear trans-III-[Co(III)L(14S)Cl](2+) enables a redox-assisted substitution on the transient {L(14S)Co(II)} unit to form [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+). The structure of the final cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) complex has been established via X-ray diffraction and fully agrees with its solution spectroscopy and electrochemistry data. The new species [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) and [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) show the expected electronic spectra and electrochemical features typical of Class II mixed valence complexes. Interestingly, in the trinuclear complex, these features appear to be a simple addition of those for the Rh(III)/Fe(II) and Co(III)/Fe(II) moieties, despite the vast differences existent in the electronic spectra and electrochemical properties of the two isolated units.  相似文献   

4.
The binding ability of a chiral L-cysteinato cobalt(III) complex, [Co(L-cys-N,S)(en)2]+ (l-H2cys = L-cysteine, en = ethylenediamine), toward a cadmium(II) center, together with the construction of S-bridged CoIIICdII structures that are controlled by anions and pH, is reported. The reaction of Lambda(L)-[Co(L-Hcys-N,S)(en)2](ClO4)2 having a pendent COOH group with CdCl2 in a 1:1 ratio in water, followed by the addition of NaCl, gave an S-bridged CoIIICdII dinuclear complex, Lambda(L)-[CdCl4{Co(L-Hcys-N,S)(en)2}] (1Cl), in which a cadmium(II) ion is weakly coordinated by a thiolato group from a Lambda(L)-[Co(L-Hcys-N,S)(en)2]2+ unit, besides four Cl- anions. The corresponding 1:1 reaction with CdBr2 and NaBr yielded an S-bridged CoIIICdIICoIII trinuclear complex composed of an S-bridged CoIIICdIICoIII trinuclear cation and a [CdBr4]2- anion, (Lambda(L))2-[CdBr3{Co(L-Hcys-N,S)(en)2}{Co(L-cys-N,S)(en)2} ][CdBr4] (2), while a CoIIICdII dinuclear complex analogous to 1Cl, Lambda(L)-[CdBr4{Co(L-Hcys-N,S)(en)2}] (1Br), was obtained by the addition of HBr instead of NaBr. In the CoIIICdIICoIII cation of 2, a CdII center is very weakly coordinated by two thiolato groups from Lambda(L)-[Co(L-Hcys-N,S)(en)2]2+ and Lambda(L)-[Co(L-cys-N,S)(en)2]+ units, besides three Br- anions, with the trinuclear structure being sustained by an intramolecular COOH...OOC hydrogen bond. On the other hand, no S-bridged structure was obtained by the corresponding 1:1 reaction with CdI2 and NaI, giving only a mononuclear CoIII species with a [CdI4]2- counteranion, Lambda(L)-[Co(L-Hcys-N,S)(en)2][CdI4] (3). When Lambda(L)-[Co(L-cys-N,S)(en)2]ClO4 having a deprotonated pendent COO- group was reacted with CdCl2 in a 1:1 ratio in water, followed by the addition of NaCl, a one-dimensional (CoIIICdII)n polymeric complex, (Lambda(L))n-[CdCl3{Co(L-cys-N,S)(en)2}]n (4Cl), in which Lambda(L)-[Co(L-cys-N,S)(en)2]+ units are alternately linked by [CdCl3]- moieties through thiolato and carboxylate groups, was constructed. An analogous (CoIIICdII)n polymeric structure having [Cd(NCS-N)3]- moieties, (Lambda(L))n-[Cd(NCS-N)3{Co(L-cys-N,S)(en)2}]n (4NCS), was also produced by the use of Cd(ClO4)2 and NaSCN.  相似文献   

5.
Treatment of [RuCl(2)(DMSO)(4)] with 2-aminoethanethiol (Haet) in ethanol gave a dicationic triruthenium complex, [Ru[Ru(aet)(3)](2)]Cl(2) ([1]Cl(2)). Complex [1]Cl(2) was also obtained by treatment of RuCl(3).nH(2)O with excess Haet in water. When [1](2+) was chromatographed on a cation-exchange column of SP-Sephadex C-25, meso (DeltaLambda) and racemic (DeltaDelta/LambdaLambda) isomers of the corresponding tricationic complex, [Ru[Ru(aet)(3)](2)](3+) ([2](3+)), were eluted with aqueous NaNO(3). The racemic isomer of [2](3+) was optically resolved into DeltaDelta and LambdaLambda isomers by using [Sb(2)(R,R-tartrato)(2)](2-) as a resolving agent. The molecular structures of DeltaLambda- and DeltaDelta/LambdaLambda-[2](NO(3))(3) were determined by X-ray crystallography. In these complexes, the central Ru atom is coordinated by six thiolato groups from two terminal fac-(S)-[Ru(aet)(3)] units in an octahedral geometry, forming a linear-type S-bridged triruthenium structure. The spectroelectrochemical studies on the electronic absorption and CD spectra, together with the electrochemical studies, demonstrated that [1](2+) and [2](3+) are interconvertible with each other through a one-electron redox process, retaining the chirality of the triruthenium structure. Their electronic structures were investigated on the basis of EPR and magnetic susceptibility measurements, which indicated that [1](2+) and [2](3+) have spin ground states of S(t) = 0 and S(t) = 1/2, respectively. The corresponding L-cysteinato complex, [Ru[Ru(L-cys-N,S)(3)](2)](3-), which was formed from RuCl(3).nH(2)O and excess L-cysteine (L-H(2)cys) in water followed by air oxidation, is also presented.  相似文献   

6.
The reaction of [Ni(aet)2] with [CoCl2(R,R-chxn)2]+ (aet = 2-aminoethanethiolate, R,R-chxn = 1R,2R-cyclohexanediamine) in water gave a CoIIINiIICoIII trinuclear complex, DeltaRRDeltaRR-[Ni(Co(aet)(2-)(R,R-chxn))2]4+ ([1a]4+), in which two cis(S)-[Co(aet)2(R,R-chxn)]+ units are linked by a central NiII ion through sulfur bridges. The two CoIII units in [1a]4+ uniformly adopt the Delta configuration, which is induced by the chirality of the terminal R,R-chxn ligands. The central NiII ion in [1a]4+ was replaced by a PdII ion to produce an analogous CoIIIPdIICoIII trinuclear complex, DeltaRRDeltaRR-[Pd(Co(aet)2(R,R-chxn))2]4+ ([2a]4+), with retention of the Delta configuration. When racemic R,R/S,S-chxn was employed instead of R,R-chxn, not only the chirality about two CoIII centers but also the chirality about two chxn ligands was unified in the S-bridged trinuclear structure, leading to the selective formation of a pair of enantiomers, DeltaRRDeltaRR/LambdaSSLambdaSS-[M(Co(aet)2(chxn))2]4+ (M = NiII ([1b]4+) and PdII ([2b]4+)). The stereochemical and spectroscopic features of these complexes are discussed on the basis of the electronic absorption, CD, and NMR spectroscopies, along with the crystal structures of [1a]4+ and [2a]4+.  相似文献   

7.
A series of chiral M(6)M'(8) cluster compounds having twelve free carboxylate groups, [M(6)M'(8)(D-pen-N,S)(12)X](5-) (M/M'/X = Pd(II)/Ag(I)/Cl(-) ([1](5-)), Pd(II)/Ag(I)/Br(-) ([2](5-)), Pd(II)/Ag(I)/I(-) ([3](5-)), Ni(II)/Ag(I)/Cl(-) ([4](5-)), Pt(II)/Ag(I)/Cl(-) ([5](5-)), Pd(II)/Cu(I)/Cl(-) ([6](5-)); D-H(2)pen = D-penicillamine), in which six cis-[M(D-pen-N,S)(2)](2-) square-planar units are bound to a [M'(8)X](7+) cubic core through sulfur-bridges, was synthesized by the reactions of cis-[M(D-pen-N,S)(2)](2-) with M' in water in the presence of halide ions. These M(6)M'(8) clusters readily reacted with La(3+) in aqueous buffer to form La(III)(2)M(6)M'(8) heterotrimetallic compounds, La(2)[1](CH(3)COO), La(2)[2](CH(3)COO), La(2)[3](CH(3)COO), La(2)[4](CH(3)COO), La(2)[5](CH(3)COO) and La(2)[6]Cl, in which the M(6)M'(8) cluster units are linked by La(3+) ions through carboxylate groups in a 1?:?2 ratio. While the La(III)(2)M(6)Ag(I)(8) compounds derived from [1](5-), [2](5-), [3](5-), [4](5-) and [5](5-) have a 1D helix supramolecular structure with a right-handedness, the La(III)(2)Pd(II)(6)Cu(I)(8) compound derived from [6](5-) has a 2D sheet-like structure with a triangular grid of the Pd(II)(6)Cu(I)(8) cluster units. When aqueous HCl was added to the reaction solution of [6](5-) and La(3+), another La(III)(2)Pd(II)(6)Cu(I)(8) heterotrimetallic compound, La(2)[6]Cl·HCl, in which the Pd(II)(6)Cu(I)(8) cluster units are linked by La(3+) ions to form a 2D structure with a rectangular grid, was produced. The solid-state structures of these La(III)(2)M(6)M'(8) compounds, determined by single-crystal X-ray crystallography, along with the spectroscopic properties of the M(6)M'(8) cluster compounds in solution, are described.  相似文献   

8.
The reaction of an S-bridged Co2(III)Ag3(I) pentanuclear complex, [Ag3[Co(aet)3]2][BF4]3 (aet = NH2CH2CH2S-), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produced an aza-capped Co2(III)-Ag3(I) complex, [Ag3[Co(L)]2]3+ ([1]3+) (L = N(CH2NHCH2CH2S-)3). The crystal structure of [1]3+ was determined by X-ray crystallography. [1][PF6]3 x H2O, empirical formula C18H44Ag3Co2F18N8OP3S6, crystallizes in the tetragonal space group 142m with a = 13.012(1) A, c = 24.707(2) A, and Z = 4. In [1]3+ the two aza-capped [Co(L)] units are linked by three Ag(I) atoms, such that the two Co(III) atoms are encapsulated in a macrobicyclic metallocage, [Ag3(I)(L)2]3-. [1]3+ was converted to an aza-capped Co4(III)Zn4(II) octanuclear complex, [Zn4O[Co(L)]4]6+ ([2]6+), by reaction with I- in the presence of Zn2+ and ZnO in water. The crystal structure of [2]6+ was also determined by X-ray crystallography. [2][PF6]6 x 8H2O, empirical formula C36H100Co4F36N16O9P6S12Zn4, crystallizes in the monoclinic space group P2(1/n) with a = 14.33(7) A, b = 25.67(10) A, c = 24.83(6) A, beta = 101.3(3) degrees , and Z = 4. In [2]6+ each of four [Co(L)] units is bound to each trigonal Zn3(II) face of the tetrahedral [Zn4(II)O]6+ core, such that each Co(III) atom is encapsulated in a macrobicyclic [Zn4(II)O(L)] fragment. Treatment of [2]6+ with a basic aqueous solution resulted in a cleavage of the Zn-S bonds to produce an aza-capped Co(III) mononuclear complex, [Co(L)] ([3]), from which [1]3+ is readily reproduced by the reaction with Ag+ in water. All the reactions were found to proceed with retention of the absolute configuration (delta or lambda) of the Co(III) chiral centers; deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and A-[3] were derived from deltadelta-[Ag3[Co(aet)3]2]3+. The contributions to circular dichroism (CD) from the triple helicity in [1]3+, besides from the asymmetric N and S donor atoms and the Co(III) chiral centers in [1]3+ and [2]6+, were estimated by comparing the CD spectra of deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and delta-[3].  相似文献   

9.
Treatment of LambdaL-[Co(L-cys-N,S)(en)2]+ (l-H2cys = L-cysteine) with [PtCl4]2- in water, followed by the addition of acid, gave an S-bridged CoIII2PtII trinuclear complex ([1]4+), which was reversibly converted to its deprotonated complex ([2]2+) in an aqueous solution. While [1]4+ formed only a trans isomer, [2]2+ existed as a mixture of trans and cis isomers. The selective formation of a cis isomer was achieved by treatment of [1]4+ or [2]2+ with phthalic acid in water, which afforded a unique CoIII4PtII2 hexanuclear complex ([3]4+). Complex [3]4+ was reverted back to [1]4+ by treatment with aqueous HCl, accompanied by the complete cis-to-trans conversion.  相似文献   

10.
Oxidation of the acetate-bridged half-lantern platinum(II) complex cis-[Pt(II)(NH(3))(2)(μ-OAc)(2)Pt(II)(NH(3))(2)](NO(3))(2), [1](NO(3))(2), with iodobenzene dichloride or bromine generates the halide-capped platinum(III) species cis-[XPt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(2)X](NO(3))(2), where X is Cl in [2](NO(3))(2) or Br in [3](NO(3))(2), respectively. These three complexes, characterized structurally by X-ray crystallography, feature short (≈2.6 ?) Pt-Pt separations, consistent with formation of a formal metal-metal bond upon oxidation. Elongated axial Pt-X distances occur, reflecting the strong trans influence of the metal-metal bond. The three structures are compared to those of other known dinuclear platinum complexes. A combination of (1)H, (13)C, (14)N, and (195)Pt NMR spectroscopy was used to characterize [1](2+)-[3](2+) in solution. All resonances shift downfield upon oxidation of [1](2+) to [2](2+) and [3](2+). For the platinum(III) complexes, the (14)N and (195)Pt resonances exhibit decreased line widths by comparison to those of [1](2+). Density functional theory calculations suggest that the decrease in the (14)N line width arises from a diminished electric field gradient at the (14)N nuclei in the higher valent compounds. The oxidation of [1](NO(3))(2) with the alternative oxidizing agent bis(trifluoroacetoxy)iodobenzene affords the novel tetranuclear complex cis-[(O(2)CCF(3))Pt(III)(NH(3))(2)(μ-OAc)(2)Pt(III)(NH(3))(μ-NH(2))](2)(NO(3))(4), [4](NO(3))(4), also characterized structurally by X-ray crystallography. In solution, this complex exists as a mixture of species, the identities of which are proposed.  相似文献   

11.
Kou HZ  Zhou BC  Liao DZ  Wang RJ  Li Y 《Inorganic chemistry》2002,41(25):6887-6891
Two cyano-bridged Ni(II)-Fe(III) complexes [(H(3)O)[Ni(H(2)L)](2)[Fe(CN)(6)](2).[Fe(CN)(6)].6H(2)O](n) (1) and [K(18-C-6)(H(2)O)(2)][Ni(H(2)L)](2)[Fe(CN)(6)](3).4(18-C-6).20H(2)O (2) (L = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane, 18-C-6 = 18-crown-6-ether) have been synthesized and characterized structurally and magnetically. Complex 1 has a zigzag one-dimensional structure, in which two trans-CN(-) ligands of each [Fe(CN)(6)](3)(-) link two trans-[Ni(H(2)L)](4+) groups, and in turn, each trans-[Ni(H(2)L)](4+) links two [Fe(CN)(6)](3)(-) in a trans fashion. Complex 2 is composed of cyano-bridged pentanuclear molecules with moieties connected by the trans-CN(-) ligands of [Fe(CN)(6)](3)(-). Magnetic studies show the existence of ferromagnetic Ni(II)-Fe(III) interactions in both complexes. The intermetallic magnetic coupling constant of both complexes was analyzed by using an approximate model on the basis of the structural features.  相似文献   

12.
Two complexes {[Co(II)(phen)(3)][Co(III)(phen)(CN)(4)](2)}·phen·11H(2)O (1) and [Co(II)(μ-CN)(2)(Co(III))(2)(phen)(4)(CN)(6)]·C(2)H(5)OH·2H(2)O (2) were synthesized with identical starting materials but with a different order of addition. Their crystal structures, spectroscopic analysis, DFT calculations, and investigations of their magnetic properties are reported herein. The X-ray diffraction studies reveal that complex 1 mainly consists of discrete [Co(II)(phen)(3)](2+) cations and [Co(III)(phen)(CN)(4)](-) anions, while complex 2 is dominantly comprised of discrete neutral V-shaped trinuclear units [Co(II)(μ-CN)(2)(Co(III))(2)(phen)(4)(CN)(6)]. The first low-spin Co(II) fragment with homoleptic 1,10-phenanthroline ligands in 1 is observed at room temperature, owing to charge transfer from the neighboring anion via adventitious contacts and anion-π interactions. This is verified by structures, detailed theoretical analyses concerning frontier molecular orbital energy differences and Mulliken charge variations of the N atoms within the Co(II)N(6) sphere, and magnetism. Meanwhile, these kinds of supramolecular interactions are not found in complex 2, so it shows the ordinary magnetic behavior of the high-spin Co(II) ion. Our investigations highlight that for quantitative comprehension of spin-state energetic ordering in transition metal complexes, the supramolecular interactions must be taken into account in addition to classical ligand field theory. Moreover, we find that the [Co(II)(phen)(3)](2+) dication is sensitive to its surroundings in the solid state, which is beneficial for magnetic adjustment for the further synthesis of tunable molecular magnets and spin crossover systems.  相似文献   

13.
A Prussian blue (PB) type material containing hexacyanovanadate(III), Mn(II)1.5[V(III)(CN)6].(0.30)MeCN (1), was formed from the reaction of [V(III)(CN)6](3-) with [Mn(NCMe)6](2+) in MeCN. This new material exhibits ferrimagnetic spin- or cluster-glass behavior below a Tc of 12K with observed magnetic hysteresis at 2 K (Hcr = 65 Oe and Mrem = 730 emu.Oe/mol). Reactions of [V(III)(CN)6](3-) with [M(II)(NCMe)6](2+) (M = Fe, Co, Ni) in MeCN lead to either partial (M = Co) or complete (M = Fe, Ni) linkage isomerization, resulting in compounds of Fe(II)(0.5)V(III)[Fe(II)(CN)6].(0.85)MeCN (2), (NEt4)(0.10)Co(II)(1.5- a)V(II)a[Co(III)(CN)6]a [V(III)(CN)6](1-a)(BF4)(0.10).(0.35)MeCN (3), and (NEt4)(0.20)V(III)[Ni(II)(CN)4](1.6).(0.10)MeCN (4) compositions. Compounds 2-4 do not magnetically order as a consequence of diamagnetic cyanometalate anions being present, i.e., [Fe(II)(CN)6](4-), [Co(III)(CN)6](3-), and [Ni(II)(CN)4](2-). Incorporation of [V(III)(CN)6](3-) into PB-type materials is synthetically challenging because of the lability of the cyanovanadate(III) anion.  相似文献   

14.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

15.
Treatment of a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(aet)(bpy)(2)}(2)](3+) (aet = 2-aminoethanthiolate; bpy = 2,2'-bipyridine), with NaI in aqueous ethanol under an aerobic condition afforded a mononuclear ruthenium(II) complex having an S-bonded sulfinato group, [1](+) ([Ru(aesi-N, S)(bpy)(2)](+) (aesi = 2-aminoethanesulfinate)). Similar treatment of optically active isomers of an analogous Ru(II)Ag(I)Ru(II) trinuclear complex, Δ(D)Δ(D)- and Λ(D)Λ(D)-[Ag{Ru(d-Hpen-O,S)(bpy)(2)}(2)](3+) (d-pen = d-penicillaminate), with NaI also produced mononuclear ruthenium(II) isomers with an S-bonded sulfinato group, Δ(D)- and Λ(D)-[2](+) ([Ru(d-Hpsi-O,S)(bpy)(2)](+) (d-psi = d-penicillaminesulfinate)), respectively, retaining the bidentate-O,S coordination mode of a d-Hpen ligand and the absolute configuration (Δ or Λ) about a Ru(II) center. On refluxing in water, the Δ(D) isomer of [2](+) underwent a linkage isomerization to form Δ(D)-[3] (+) ([Ru(d-Hpsi-N,S)(bpy)(2)](+)), in which a d-Hpsi ligand coordinates to a Ru(II) center in a bidentate-N,S mode. Complexes [1](+), Δ(D)- and Λ(D)-[2](+), and Δ(D)-[3](+) were fully characterized by electronic absorption, CD, NMR, and IR spectroscopies, together with single-crystal X-ray crystallography. The electrochemical properties of these complexes, which are highly dependent on the coordination mode of sulfinate ligands, are also described.  相似文献   

16.
A bis(ruthenium-bipyridine) complex bridged by 1,8-bis(2,2':6',2'-terpyrid-4'-yl)anthracene (btpyan), [Ru(2)(μ-Cl)(bpy)(2)(btpyan)](BF(4))(3) ([1](BF(4))(3); bpy = 2,2'-bipyridine), was prepared. The cyclic voltammogram of [1](BF(4))(3) in water at pH?1.0 displayed two reversible [Ru(II),Ru(II)](3+)/[Ru(II),Ru(III)](4+) and [Ru(II),Ru(III)](4+)/[Ru(III),Ru(III)](5+) redox couples at E(1/2)(1) = +0.61 and E(1/2)(2) = +0.80?V (vs. Ag/AgCl), respectively, and an irreversible anodic peak at around E = +1.2?V followed by a strong anodic currents as a result of the oxidation of water. The controlled potential electrolysis of [1](3+) ions at E = +1.60?V in water at pH?2.6 (buffered with H(3)PO(4)/NaH(2)PO(4)) catalytically evolved dioxygen. Immediately after the electrolysis of the [1](3+) ion in H(2)(16)O at E = +1.40?V, the resultant solution displayed two resonance Raman bands at nu = 442 and 824?cm(-1). These bands shifted to nu = 426 and 780?cm(-1), respectively, when the same electrolysis was conducted in H(2)(18)O. The chemical oxidation of the [1](3+) ion by using a Ce(IV) species in H(2)(16)O and H(2)(18)O also exhibited the same resonance Raman spectra. The observed isotope frequency shifts (Δnu = 16 and 44?cm(-1)) fully fit the calculated ones based on the Ru-O and O-O stretching modes, respectively. The first successful identification of the metal-O-O-metal stretching band in the oxidation of water indicates that the oxygen-oxygen bond at the stage prior to the evolution of O(2) is formed through the intramolecular coupling of two Ru-oxo groups derived from the [1](3+) ion.  相似文献   

17.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

18.
Treatment of [Ni(L)][L =((-)SCH(2)CH(2)NH[double bond, length as m-dash]C(CH(3))-)(2)] with Ag(+) in water gave a pinwheel-like S-bridged Ni(II)(3)Ag(I)(2) structure in [Ag(2)[Ni(L)](3)](2+), which further reacted with [Ni(L)] to produce a Ni(II)(4)Ag(I)(2) structure in [Ag(2)[Ni(L)](4)](2+) and a Ni(II)(7)Ag(I)(4) structure in [Ag(4)[Ni(L)](7)](4+).  相似文献   

19.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

20.
The new phenol-imidazole pro-ligands (R)LH react with Co(BF(4))(2).6H(2)O in the presence of Et(3)N to form the corresponding [Co(II)((R)L)(2)] compound (R = Ph (1), PhOMe (2), or Bz (3)). Also, (Bz)LH, reacts with Co(ii) in the presence of Et(3)N and H(2)O(2) to form [Co(III)((Bz)L)(3)](4). The structures of 1.2.5MeCN, 2.2DMF, 3.4MeOH, and 4.4DMF have been determined by X-ray crystallography. 1, 2, and 3 each involve Co(II) bound to two N,O-bidentate ligands with a distorted tetrahedral coordination sphere; 4 involves Co(III) bound to three N,O-bidentate ligands in a mer-N(3)O(3) distorted octahedral geometry. [Co(II)((R)L)(2)](R = Ph or PhOMe) undergo two, one-electron, oxidations. The products of the first oxidation, [1](+) and [2](+), have been synthesised by the chemical oxidation of 1 and 2, respectively; these cations, formulated as [Co(II)((R)L*)((R)L)(2)](+), comprise one phenoxyl radical and one phenolate ligand bound to Co(II) and are the first phenoxyl radical ligand complexes of tetra-coordinated Co(II). 4 undergoes two, one-electron, ligand-based oxidations, the first of which produces [4](+), [Co(III)((Bz)L*)((Bz)L)(2)](+). Unlike [1](+) and [2](+), product of the one-electron oxidation of [Co(II)((Bz)L)(2)], [3](+), is unstable and decomposes to produce [4](+). These studies have demonstrated that the chemical properties of [M(II)((R)L*)((R)L)(2)](+)(M = Co, Cu, Zn) are highly dependent on the nature of both the ligand and the metal centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号