首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let be an algebraic integer of degree , not or a root of unity, all of whose conjugates are confined to a sector . In the paper On the absolute Mahler measure of polynomials having all zeros in a sector, G. Rhin and C. Smyth compute the greatest lower bound of the absolute Mahler measure ( of , for belonging to nine subintervals of . In this paper, we improve the result to thirteen subintervals of and extend some existing subintervals.

  相似文献   


2.
This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank  abelian varieties  that are optimal quotients of attached to newforms. We prove theorems about the ratio , develop tools for computing with , and gather data about certain arithmetic invariants of the nearly abelian varieties of level . Over half of these have analytic rank , and for these we compute upper and lower bounds on the conjectural order of  . We find that there are at least such for which the Birch and Swinnerton-Dyer conjecture implies that is divisible by an odd prime, and we prove for of these that the odd part of the conjectural order of really divides by constructing nontrivial elements of using visibility theory. We also give other evidence for the conjecture. The appendix, by Cremona and Mazur, fills in some gaps in the theoretical discussion in their paper on visibility of Shafarevich-Tate groups of elliptic curves.

  相似文献   


3.
We present a combinatorial method for solving a certain system of polynomial equations of Vandermonde type in variables by reducing it to the problem of solving two special linear systems of size and rooting a single univariate polynomial of degree . Over , all solutions can be found with fixed precision using, up to polylogarithmic factors, bitwise operations in the worst case. Furthermore, if the data is well conditioned, then this can be reduced to bit operations, up to polylogarithmic factors. As an application, we show how this can be used to fit data to a complex exponential sum with terms in the same, nearly optimal, time.

  相似文献   


4.
This paper concerns a harmonic projection method for computing an approximation to an eigenpair of a large matrix . Given a target point and a subspace that contains an approximation to , the harmonic projection method returns an approximation to . Three convergence results are established as the deviation of from approaches zero. First, the harmonic Ritz value converges to if a certain Rayleigh quotient matrix is uniformly nonsingular. Second, the harmonic Ritz vector converges to if the Rayleigh quotient matrix is uniformly nonsingular and remains well separated from the other harmonic Ritz values. Third, better error bounds for the convergence of are derived when converges. However, we show that the harmonic projection method can fail to find the desired eigenvalue --in other words, the method can miss if it is very close to . To this end, we propose to compute the Rayleigh quotient of with respect to and take it as a new approximate eigenvalue. is shown to converge to once tends to , no matter how is close to . Finally, we show that if the Rayleigh quotient matrix is uniformly nonsingular, then the refined harmonic Ritz vector, or more generally the refined eigenvector approximation introduced by the author, converges. We construct examples to illustrate our theory.

  相似文献   


5.
We prove that for every dimension and every number of points, there exists a point-set whose -weighted unanchored discrepancy is bounded from above by independently of provided that the sequence has for some (even arbitrarily large) . Here is a positive number that could be chosen arbitrarily close to zero and depends on but not on or . This result yields strong tractability of the corresponding integration problems including approximation of weighted integrals over unbounded domains such as . It also supplements the results that provide an upper bound of the form when .

  相似文献   


6.
7.
Let be odd primes and . Put


Then we call the kernel, the triple the signature, and the height of , respectively. We call a -number if it is a Carmichael number with each prime factor . If is a -number and a strong pseudoprime to the bases for , we call a -spsp . Since -numbers have probability of error (the upper bound of that for the Rabin-Miller test), they often serve as the exact values or upper bounds of (the smallest strong pseudoprime to all the first prime bases). If we know the exact value of , we will have, for integers , a deterministic efficient primality testing algorithm which is easy to implement.

In this paper, we first describe an algorithm for finding -spsp(2)'s, to a given limit, with heights bounded. There are in total -spsp's with heights . We then give an overview of the 21978 - spsp(2)'s and tabulate of them, which are -spsp's to the first prime bases up to ; three numbers are spsp's to the first 11 prime bases up to 31. No -spsp's to the first prime bases with heights were found. We conjecture that there exist no -spsp's to the first prime bases with heights and so that


which was found by the author in an earlier paper. We give reasons to support the conjecture. The main idea of our method for finding those -spsp's is that we loop on candidates of signatures and kernels with heights bounded, subject those candidates of -spsp's and their prime factors to Miller's tests, and obtain the desired numbers. At last we speed our algorithm for finding larger -spsp's, say up to , with a given signature to more prime bases. Comparisons of effectiveness with Arnault's and our previous methods for finding -strong pseudoprimes to the first several prime bases are given.

  相似文献   


8.
To supplement existing data, solutions of are tabulated for primes with and . For , five new solutions 2^{32}$"> are presented. One of these, for , also satisfies the ``reverse' congruence . An effective procedure for searching for such ``double solutions' is described and applied to the range , . Previous to this, congruences are generally considered for any and fixed prime to see where the smallest prime solution occurs.

  相似文献   


9.
Counting primes in residue classes   总被引:1,自引:0,他引:1  
We explain how the Meissel-Lehmer-Lagarias-Miller-Odlyzko method for computing can be used for computing efficiently , the number of primes congruent to modulo up to . As an application, we computed the number of prime numbers of the form less than for several values of up to and found a new region where is less than near .

  相似文献   


10.
The two matrix iterations are known to converge linearly to a positive definite solution of the matrix equations , respectively, for known choices of and under certain restrictions on . The convergence for previously suggested starting matrices is generally very slow. This paper explores different initial choices of in both iterations that depend on the extreme singular values of and lead to much more rapid convergence. Further, the paper offers a new algorithm for solving the minus sign equation and explores mixed algorithms that use Newton's method in part.

  相似文献   


11.
For a prime we describe an algorithm for computing the Brandt matrices giving the action of the Hecke operators on the space of modular forms of weight and level . For we define a special Hecke stable subspace of which contains the space of modular forms with CM by the ring of integers of and we describe the calculation of the corresponding Brandt matrices.

  相似文献   


12.
More on the total number of prime factors of an odd perfect number   总被引:2,自引:0,他引:2  
Let denote the sum of the positive divisors of . We say that is perfect if . Currently there are no known odd perfect numbers. It is known that if an odd perfect number exists, then it must be of the form , where are distinct primes and . Define the total number of prime factors of as . Sayers showed that . This was later extended by Iannucci and Sorli to show that . This paper extends these results to show that .

  相似文献   


13.
Davenport and Heilbronn defined a bijection between classes of binary cubic forms and classes of cubic fields, which has been used to tabulate the latter. We give a simpler proof of their theorem then analyze and improve the table-building algorithm. It computes the multiplicities of the general cubic discriminants (real or imaginary) up to in time and space , or more generally in time and space for a freely chosen positive . A variant computes the -ranks of all quadratic fields of discriminant up to with the same time complexity, but using only units of storage. As an application we obtain the first real quadratic fields with , and prove that is the smallest imaginary quadratic field with -rank equal to .

  相似文献   


14.
Given the infinitesimal generator of a -semigroup on the Banach space which satisfies the Kreiss resolvent condition, i.e., there exists an such that for all complex with positive real part, we show that for general Banach spaces this condition does not give any information on the growth of the associated -semigroup. For Hilbert spaces the situation is less dramatic. In particular, we show that the semigroup can grow at most like . Furthermore, we show that for every there exists an infinitesimal generator satisfying the Kreiss resolvent condition, but whose semigroup grows at least like . As a consequence, we find that for with the standard Euclidian norm the estimate cannot be replaced by a lower power of or .

  相似文献   


15.
Given an odd prime we show a way to construct large families of polynomials , , where is a set of primes of the form mod and is the irreducible polynomial of the Gaussian periods of degree in . Examples of these families when are worked in detail. We also show, given an integer and a prime mod , how to represent by matrices the Gaussian periods of degree in , and how to calculate in a simple way, with the help of a computer, irreducible polynomials for elements of .

  相似文献   


16.
Let be a primitive, real and even Dirichlet character with conductor , and let be a positive real number. An old result of H. Davenport is that the cycle sums are all positive at and this has the immediate important consequence of the positivity of . We extend Davenport's idea to show that in fact for , 0$"> for all with so that one can deduce the positivity of by the nonnegativity of a finite sum for any . A simple algorithm then allows us to prove numerically that has no positive real zero for a conductor up to 200,000, extending the previous record of 986 due to Rosser more than 50 years ago. We also derive various estimates explicit in of the as well as the shifted cycle sums considered previously by Leu and Li for . These explicit estimates are all rather tight and may have independent interests.

  相似文献   


17.
A finite element method is considered for dealing with nearly incompressible material. In the case of large deformations the nonlinear character of the volumetric contribution has to be taken into account. The proposed mixed method avoids volumetric locking also in this case and is robust for (with being the well-known Lamé constant). Error estimates for the -norm are crucial in the control of the nonlinear terms.

  相似文献   


18.
In this paper, we prove that there is an arithmetic progression of positive odd numbers for each term of which none of five consecutive odd numbers and can be expressed in the form , where is a prime and are nonnegative integers.

  相似文献   


19.
For the familiar Fibonacci sequence (defined by , and for ), increases exponentially with at a rate given by the golden ratio . But for a simple modification with both additions and subtractions - the random Fibonacci sequences defined by , and for , , where each sign is independent and either or - with probability - it is not even obvious if should increase with . Our main result is that

with probability . Finding the number involves the theory of random matrix products, Stern-Brocot division of the real line, a fractal measure, a computer calculation, and a rounding error analysis to validate the computer calculation.

  相似文献   


20.
Smale's analysis of Newton's iteration function induce a lower bound on the gap between two distinct zeros of a given complex-valued analytic function . In this paper we make use of a fundamental family of iteration functions , , to derive an infinite family of lower bounds on the above gap. However, even for , where coincides with Newton's, our lower bound is more than twice as good as Smale's bound or its improved version given by Blum, Cucker, Shub, and Smale. When is a complex polynomial of degree , for small the corresponding bound is computable in arithmetic operations. For quadratic polynomials, as increases the lower bounds converge to the actual gap. We show how to use these bounds to compute lower bounds on the distance between an arbitrary point and the nearest root of . In particular, using the latter result, we show that, given a complex polynomial , , for each we can compute upper and lower bounds and such that the roots of lie in the annulus . In particular, , ; and , , where . An application of the latter bounds is within Weyl's classical quad-tree algorithm for computing all roots of a given complex polynomial.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号