首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophobically capped nanocrystals of formamidinium lead bromide (FAPbBr3) perovskite (PNC) show bright and stable fluorescence in solution and thin‐film states. When compared with isolated PNCs in a solution, close‐packed PNCs in a thin film show extended fluorescence lifetime (ca. 4.2 μs), which is due to hopping or migration of photogenerated excitons among PNCs. Both fluorescence quantum efficiency and lifetime decrease in a PNC thin film doped with fullerene (C60), which is attributed to channeling of exciton migration into electron transfer to C60. On the other hand, quenching of fluorescence intensity of a PNC solution is not accompanied by any change in fluorescence lifetime, indicating static electron transfer to C60 adsorbed onto the hydrophobic surface of individual PNCs. Exciton migration among close‐packed PNCs and electron transfer to C60 places C60‐doped PNC thin films among cost‐effective antenna systems for solar cells.  相似文献   

2.
Oligophenylenevinylene (OPV)‐terminated phenylenevinylene dendrons G1 – G4 with one, two, four, and eight “side‐arms”, respectively, were prepared and attached to C60 by a 1,3‐dipolar cycloaddition of azomethine ylides generated in situ from dendritic aldehydes and N‐methylglycine. The relative electronic absorption of the OPV moiety increases progressively along the fullerodendrimer family C60G1 – C60G4 , reaching a 99:1 ratio for C60G4 (antenna effect). UV/Vis and near‐IR luminescence and transient absorption spectroscopy was used to elucidate photoinduced energy and electron transfer in C60G1 – C60G4 as a function of OPV moiety size and solvent polarity (toluene, dichloromethane, benzonitrile), taking into account the fact that the free‐energy change for electron transfer is the same along the series owing to the invariability of the donor–acceptor couple. Regardless of solvent, all the fullerodendrimers exhibit ultrafast OPV→C60 singlet energy transfer. In CH2Cl2, the OPV→C60 electron transfer from the lowest fullerene singlet level (1C60*) is slightly exergonic (ΔGCS≈0.07 eV), but is observed, to an increasing extent, only in the largest systems C60G2 – C60G4 with lower activation barriers for electron transfer. This effect has been related to a decrease of the reorganization energy upon enlargement of the molecular architecture. Structural factors are also at the origin of an unprecedented OPV→C60 electron transfer observed for C60G3 and C60G4 in apolar toluene, whereas in benzonitrile, electron transfer occurs in all cases. Monitoring of the lowest fullerene triplet state by sensitized singlet oxygen luminescence and transient absorption spectroscopy shows that this level is populated through intersystem crossing and is not involved in photoinduced electron transfer.  相似文献   

3.
Electrochemical detection of dopamine (DA) in the presence of a large excess of ascorbic acid (AA) was investigated with a novel all‐carbon nanocomposite film of C60‐MWCNTs (C60‐functionalized multi‐walled carbon nanotubes) using a bare MWCNTs film as control. Although both films can selectively detect DA from AA by separating their oxidation potentials, the C60‐MWCNTs film shows special selectivity and good sensitivity for detecting DA. On one hand, the C60‐MWCNTs composite film shows a higher activity for DA oxidation with enhanced peak current. On the other hand, the C60‐MWCNTs composite film effectively suppresses the oxidation of AA. Remarkably, it is found that the oxidation current of DA is over 2 times higher than that of AA even when the concentration of AA is about 3 to 4 orders of magnitude higher than that of DA. This offers a tremendous advantage for the simple and clean detection of DA free of the interfering AA signal in a real assay. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectrometry are used to characterize the C60‐MWCNTs composite film. These novel properties are interpreted to arise from the facile electron transfer between C60 and MWCNTs in the C60‐MWCNTs nanocomposite film.  相似文献   

4.
Donor–bridge–acceptor triad (Por‐2TV‐C60) and tetrad molecules ((Por)2‐2TV‐C60), which incorporated C60 and one or two porphyrin molecules that were covalently linked through a phenylethynyl‐oligothienylenevinylene bridge, were synthesized. Their photodynamics were investigated by fluorescence measurements, and by femto‐ and nanosecond laser flash photolysis. First, photoinduced energy transfer from the porphyrin to the C60 moiety occurred rather than electron transfer, followed by electron transfer from the oligothienylenevinylene to the singlet excited state of the C60 moiety to produce the radical cation of oligothienylenevinylene and the radical anion of C60. Then, back‐electron transfer occurred to afford the triplet excited state of the oligothienylenevinylene moiety rather than the ground state. Thus, the porphyrin units in (Por)‐2TV‐C60 and (Por)2‐2TV‐C60 acted as efficient photosensitizers for the charge separation between oligothienylenevinylene and C60.  相似文献   

5.
From previous reports, graphitic carbon nitride (g‐C3N4) can be used as a photocatalyst, although the low efficiency of solar energy utilization, small specific surface area and high recombination rate of photogenerated electron–hole pairs limit its practical application. For the purpose of increasing photocatalytic activity, especially under irradiation of visible light, we successfully synthesized a new composite, namely porous g‐C3N4/Ag/Cu2O, through chemical adsorption of Ag‐doped Cu2O on porous g‐C3N4, which has not been investigated carefully worldwide. The composition, morphology and optical properties of the composite were investigated through methods including X‐ray diffraction, energy‐dispersive X‐ray, Fourier transform infrared, UV–visible and photoluminescence spectroscopies and transmission electron microscopy. Using rhodamine B as organic pollutant to be degraded under the irradiation of visible light, different mass ratios of Ag/Cu2O doped on porous g‐C3N4 led to enhanced photocatalytic performance of the composite compared to pure porous g‐C3N4. When the mass ratio of Ag/Cu2O is 15%, porous g‐C3N4/Ag/Cu2O exhibits a degradation rate 2.015 times higher than that of pure porous g‐C3N4. The reasons for this phenomenon may be attributed to the increased utilization efficiency of visible light, high‐speed separation of photogenerated electron–hole pairs, accelerated interfacial transfer process of electrons and increased surface area of the composite. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Electro-and photoconductive properties of polymer composites doped with heteropolynuclear M(II)/Cr(III) (M = Zn, Co, Mn) complexes were studied in the presence of organic additives with different electron donor-acceptor properties: anthracene, fullerene C60, terephthaloyldianthracene, and bis(biphenyl)chromium(I) fulleride (Ph-Ph)2CrC60. Upon excitation of the d-d transition in Cr(III), the magnitude of inner photoelectric effect in composite films examined is the highest for the Zn(II)/Cr(III) complex and increases in the series of additives anthracene, fullerene C60, terephthaloyldianthracene, (Ph-Ph)2CrC60. The use of the dopant (Ph-Ph)2CrC60 increases photocurrent by about two orders of magnitude.  相似文献   

7.
The one-electron reduction potential of the triplet excited state of C60 is similar to those of some aromatic carbonyl compounds. Thus, photoinduced electron transfer is expected to occur from the common electron donors to both C60 and aromatic carbonyl compounds. In this paper comparison is made between photoinduced electron transfer from organosilanes and organostannanes used as the electron donors to the triplet excited states of C60 and aromatic carbonyl compounds, providing valuable insight into their common mechanistic features for the C-C bond formation via photoinduced electron transfer as well as the new functionalization method of C60.  相似文献   

8.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   

9.
He‐Rng Zeng 《中国化学》2002,20(12):1546-1551
The photoinduced electron‐transfer reaction of N, N, N', N'‐tetra‐(p‐methylphenyl)‐4,4'‐diamino‐1,1'‐diphenyl ether (TPDAE) and fullerenes (C60/C70) by nanosecond laser flash photolysis occurred in benzonitrile. Transient absorption spectral measurements were carried out during 532 nm laser flash photolysis of a mixture of the fullerenes (C60/C70) and TPDAE. The electron transfer from the TPDAE to excited triplet state of the fullerenes (C60/C70) quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60/C70) in benzonitrile have been evaluated by observing the transient absorption bands in the near‐IR region where the excited triplet state, radical anion of fullerenes (C60/C70) and radical cations of TPDAE are expected to appear.  相似文献   

10.
We prepared a non‐covalently coupled hybrid of reduced graphene oxide (rGO)‐doped graphitic carbon nitride (g‐C3N4) by freezing‐assisted assembly and calcination. Fourier transform infrared, Raman and X‐ray photoelectron spectroscopies and transmission electron microscopy confirmed that rGO was incorporated into the bulk g‐C3N4, which was an ideal support for loading Pd nanoparticles. The Pd nanoparticles with an average size of 4.57 nm were uniformly dispersed on the rGO‐doped g‐C3N4 surface. The layered structure provided large contact area of g‐C3N4 with rGO, further accelerating the electron transfer rate and inhibiting electron–hole recombination. Consequently, compared with Pd/rGO/g‐C3N4 and Pd/g‐C3N4, the Pd/rGO‐doped g‐C3N4 showed a prominent catalytic activity for visible‐light‐driven photocatalytic Suzuki–Miyaura coupling at ambient temperature. The Pd/rGO‐doped g‐C3N4 exhibited very high stability after six consecutive cycles with minimal loss of catalytic activity.  相似文献   

11.
Shielding diamagnetism and X-ray powder diffraction were used to characterize alkali-metal fullerides of sodium, potassium, rubidium, and cesium. The superconducting phase in both the potassium and rubidium systems has the composition A3C60 and a face centered cubic structure with alkali metal filling all octahedral and tetrahedral sites of close packed C60, layers. High pressure magnetic susceptibility measurements on K3C60 showed a negative pressure dependence on the superconducting transition temperature of −0.78 K/kbar. No evidence for superconductivity was observed in either the sodium or cesium systems, even though Na3C60 appears isostructural with K3C60 and Rb3C60.  相似文献   

12.
Supramolecular composites composed of fullerene C60 and carbon nanodiamond (ND) were constructed through spontaneous complexation of C60 aggregates onto the surface of ND aggregates in N‐methylpyrrolidone (NMP). The resulting C60‐ND composite was assembled onto a nanostructured SnO2 electrode by an electrophoretic deposition method. Formation of the C60‐ND composite was confirmed by dynamic light scattering (DLS) and field‐emission scanning electron microscopy (FESEM). The C60‐ND composite on the SnO2 electrode showed high incident photon‐to‐current efficiencies (IPCEs) in the visible region as compared with the single component system of C60 or ND. The improved photocurrent generation of the C60‐ND composite may result from the photoinduced charge separation at the interface between C60 and ND. These results obtained here will provide valuable information on the design of optoelectronic devices based on all‐nanocarbon materials.  相似文献   

13.
First‐principles DFT calculations are carried out to study the changes in structures and electronic properties of two‐dimensional single‐layer graphene in the presence of non‐covalent interactions induced by carbon and boron fullerenes (C60, C70, C80 and B80). Our study shows that larger carbon fullerene interacts more strongly than the smaller fullerene, and boron fullerene interacts more strongly than that of its carbon analogue with the same nuclearity. We find that van der Waals interactions play a major role in governing non‐covalent interactions between the adsorbed fullerenes and graphene. Moreover, a greater extent of van der Waals interactions found for the larger fullerenes, C80 and B80, relative to smaller C60, and consequently, results in higher stabilisation. We find a small amount of electron transfer from graphene to fullerene, which gives rise to a hole‐doped material. We also find changes in the graphene electronic band structures in the presence of these surface‐decorated fullerenes. The Dirac cone picture, such as that found in pristine graphene, is significantly modified due to the re‐hybridisation of graphene carbon orbitals with fullerenes orbitals near the Fermi energy. However, all of the composites exhibit perfect conducting behaviour. The simulated absorption spectra for all of the graphene–fullerene hybrids do not exhibit a significant change in the absorption peak positions with respect to the pristine graphene absorption spectrum. Additionally, we find that the hole‐transfer integral between graphene and C60 is larger than the electron‐transfer integrals and the extent of these transfer integrals can be significantly tuned by graphene edge functionalisation with carboxylic acid groups. Our understanding of the non‐covalent functionalisation of graphene with various fullerenes would promote experimentalists to explore these systems, for their possible applications in electronic and opto‐electronic devices.  相似文献   

14.
The phenomena of aggregation and coalescence of fullerenes in the UV-laser ablation time-of-flight mass spectrometric investigation of C60-modified poly(N-vinylcarbazole) both in the positive and in the negative ion channels have been observed. The results indicate that in C60 chemically modified PVK (C60–PVK) copolymer the nascent fullerene fragments ruptured from main chain can easily coalesce into large fullerenes through collisions, whereas in the C60-doped PVK the aggregation and coalescence of C60 were relative weak due to nonbounding action and incomplete charge transfer behavior between C60 and PVK. Furthermore, the photoinduced electron transfer behavior between C60 and carbazole units in the C60 chemically modified poly(N-vinylcarbazole) in benzonitrile by laser flash photolysis at 355 nm has also been investigated. Efficiency of the anion radical of C60 in copolymer at 1080 nm is higher than that of the C60-doped poly(N-vinylcarbazole) polymers. The formation of a C60 radical anion may be ascribed to photoinduced electron transfer between C60 pendanted on the main chain backbone and the inter-, and intrachain carbazole units in the copolymer. © 1997 John Wiley & Sons, Inc. 35 : 1185–1190, 1997  相似文献   

15.
C60 was bonded to allylamine homopolymer (PALA) and its copolymers with styrene, 2-hydroxypropyl methacrylate etc. as a pendant functional group. The polyallylamine bonded C60 displays fluorescence at room temperature although C60 does not in itself. This may be due to the lessening of highly symmetrical shape of C60. Some C60-amine adducts are prepared as the model of polyallylamine-C60 for the clarification. C60 doped poly(tetrahydrofurfuryl methacrylate) film has been prepared and its optical non-linearity has been investigated. The charge transfer complexes formation of C60 with polymers having electron-donating chromophore moieties such as poly(dimethylaminostyrene), poly(acryloylphenothiazine), poly(acryloylphenoxazine) and poly(styrene-co-dimethylaminophenylmaleimide) as well as with polymer having electron-accepting chromophore moiety poly(cyanophenylacrylamide) have been manifested.  相似文献   

16.
Two new artificial mimics of the photosynthetic antenna‐reaction center complex have been designed and synthesized (BDP‐H2P‐C60 and BDP‐ZnP‐C60). The resulting electron‐donor/acceptor conjugates contain a porphyrin (either in its free‐base form (H2P) or as Zn‐metalated complex (ZnP)), a boron dipyrrin (BDP), and a fulleropyrrolidine possessing, as substituent of the pyrrolidine nitrogen, an ethylene glycol chain terminating in an amino group C60‐X‐NH2 (X=spacer). In both cases, the three different components were connected by s‐triazine through stepwise substitution reactions of cyanuric chloride. In addition to the facile synthesis, the star‐type arrangement of the three photo‐ and redox‐active components around the central s‐triazine unit permits direct interaction between one another, in contrast to reported examples in which the three components are arranged in a linear fashion. The energy‐ and electron‐transfer properties of the resulting electron‐donor/acceptor conjugates were investigated by using UV/Vis absorption and emission spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. Comparison of the absorption spectra and cyclic voltammograms of BDP‐H2P‐C60 and BDP‐ZnP‐C60 with those of BDP‐H2P, BDP‐ZnP and BDP‐C60, which were used as references, showed that the spectroscopic and electrochemical properties of the individual constituents are basically retained, although some appreciable shifts in terms of absorption indicate some interactions in the ground state. Fluorescence lifetime measurements and transient absorption experiments helped to elucidate the antenna function of BDP, which upon selective excitation undergoes a rapid and efficient energy transfer from BDP to H2P or ZnP. This is then followed by an electron transfer to C60, yielding the formation of the singlet charge‐separated states, namely BDP‐H2P .+‐ C60 .? and BDP‐ZnP .+‐ C60 . ?. As such, the sequence of energy transfer and electron transfer in the present models mimics the events of natural photosynthesis.  相似文献   

17.
Two subphthalocyanine–C60 conjugates have been prepared by means of the 1,3-dipolar cycloaddition reaction of (perfluoro) or hexa(pentylsulfonyl) electron deficient subphthalocyanines to C60. Comprehensive assays regarding the electronic features – in the ground and excited state – of the resulting conjugates revealed energy and electron transfer processes upon photoexcitation. Most important is the unambiguous evidence – in terms of time-resolved spectroscopy – of an ultrafast oxidative electron transfer evolving from C60 to the photoexcited subphthalocyanines. This is, to the best of our knowledge, the first case of an intramolecular oxidation of C60 within electron donor–acceptor conjugates by means of only photoexcitation.  相似文献   

18.
The effect of donor-acceptor distance in controlling the rate of electron transfer in axially linked silicon phthalocyanine-C60 dyads has been investigated. For this, two C60-SiPc-C60 dyads, 1 and 2 , varying in their donor-acceptor distance, have been newly synthesized and characterized. In the case of C60-SiPc-C60 1 where the SiPc and C60 are separated by a phenyl spacer, faster electron transfer was observed with kcs equal to 2.7×109 s−1 in benzonitrile. However, in the case of C60-SiPc-C60 2 , where SiPc and C60 are separated by a biphenyl spacer, a slower electron transfer rate constant, kcs=9.1×108 s−1, was recorded. The addition of an extra phenyl spacer in 2 increased the donor-acceptor distance by ∼4.3 Å, and consequently, slowed down the electron transfer rate constant by a factor of ∼3.7. The charge separated state lasted over 3 ns, monitoring time window of our femtosecond transient spectrometer. Complimentary nanosecond transient absorption studies revealed formation of 3SiPc* as the end product and suggested the final lifetime of the charge separated state to be in the 3–20 ns range. Energy level diagrams established to comprehend these mechanistic details indicated that the comparatively high-energy SiPc.+-C60.− charge separated states (1.57 eV) populated the low-lying 3SiPc* (1.26 eV) prior returning to the ground state.  相似文献   

19.
The frequency dependences of the electrophysical parameters (capacitance, dielectric constant, dielectric loss tangent, and resistivity) of polystyrene films doped with small (up to 1 wt % C60) additions of fullerenes were determined by dielectrometry. The composite materials obtained were concluded to be nonpolar. The dielectric constant as a function of the film composition passes through a minimum at 0.035 wt % C60. The polymer preserves good insulating properties on doping with fullerenes.  相似文献   

20.
Hexagonal close-packed (HCP) C60 and C70 films have been prepared by the Langmuir method and examined by electron microscopy and electron-diffraction analysis. It has been shown that the vacuum deposition of a C60+C70 mixture results in the formation of a film with small sized grains and a distorted C60-HCP structure. The simultaneous deposition of C60 and ferrocene results in the formation of a film with a changed morphology and an electron-diffraction pattern that contains a variable amount of ferrocene depending on the experimental conditions. The electron-diffraction pattern corresponds to the presence of the known molecular complex C60[(C5H5)2Fe]2. The analogous simultaneous deposition of fullerene C60 and cobaltocene results in the formation of a C60 film stable in air and water, which contains carbon and cobalt (from the data of X-ray fluorescence, electron microscopy and microdiffraction). It has a different morphology and different diffraction patterns than pure C60 films and, depending on the cobaltocene content (relative to that of fullerene), appears to be a fullerite film doped with various amounts of cobaltocenium fullende, which is an ionic compound.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1379–1383, August, 1994.The work was financially supported by the Russian Foundation for Basic Research (Projects 93-03-4676 and 93-03-18368).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号