首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A red-emitting phosphor, Eu(3+)-doped Ca(9)LiGd(2/3)(PO(4))(7), was synthesized by the conventional high-temperature solid-state reaction. X-ray powder diffraction (XRD) analyses confirmed the pure crystalline phase of Whitlockite-type structure. The excitation spectra of Eu(3+) doped Ca(9)LiGd(2/3)(PO(4))(7) were measured in the VUV and UV region indicating an efficient energy transfer process from the host and Gd(3+) to Eu(3+) ions. Upon excitation with VUV and UV radiation, the phosphor showed strong red emission around 611 nm corresponding to the forced electric dipole (5)D(0)→(7)F(2) transition of Eu(3+) ions. The VUV- and UV-excited luminescence spectra of Ca(9)LiGd(2/3)(PO(4))(7):Eu(3+) together with the dependence of the integrated emission intensities on the doping levels were investigated. The Eu(3+) ions were investigated by a tunable laser as an excitation source. The excitation spectra of (7)F(0)→(5)D(0) transitions suggest that there are two families of inequivalent sites for Eu(3+) in this host. The concentration quenching and crystallographic site-occupancy of Eu(3+) ions in Ca(9)LiGd(2/3)(PO(4))(7) host were discussed on the basis of the site selective excitation and emission spectra, the luminescence decay and its crystal structure.  相似文献   

2.
The stoichiometric reaction mechanisms, rate constants and activation parameters for inter- and intramolecular ligand exchange reactions in the binary Y/Eu(TTA)(3)(OH(2))(2)-HTTA and the ternary Y/Eu(TTA)(3)(OH(2))(2)-TBP systems have been studied in chloroform using (1)H and (31)P NMR methods. Most complexes contain coordinated water that is in very fast exchange with water in the chloroform solvent. The exchange reactions involving TTA/HTTA and TBP are also fast, but can be studied at lower temperature. The rate constant and activation parameters for the intramolecular exchange between two structure isomers in Y(TTA)(3)(OH(2))(2) and Y(TTA)(3)(TBP)(OH(2)) were determined from the line-broadening of the methine protons in coordinated TTA. The rate equations for the intermolecular exchange between coordinated TTA and free HTTA in both complexes are consistent with a two-step mechanism where the first step is a fast complex formation of HTTA, followed by a rate determining step involving proton transfer from coordinated HTTA to TTA. The rate constants for both the inter- and intramolecular exchange reactions are significantly smaller in the TBP system. The same is true for the activation parameters in the Y(TTA)(3)(OH(2))(2)-HTTA and the ternary Y/Eu(TTA)(3)(TBP)(OH(2))-HTTA systems, which are ΔH(≠) = 71.8 ± 2.8 kJ mol(-1), ΔS(≠) = 62.4 ± 10.3 J mol(-1) K(-1) and ΔH(≠) = 38.8 ± 0.6 kJ mol(-1), ΔS(≠) = -93.0 ± 3.3 J mol(-1) K(-1), respectively. The large difference in the activation parameters does not seem to be related to a difference in mechanism as judged by the rate equation; this point will be discussed in a following communication. The rate and mechanism for the exchange between free and coordinated TBP follows a two-step mechanism, involving the formation of Y(TTA)(3)(TBP)(2).  相似文献   

3.
4-Vinylphenylboronic acid ligand (VPBA) is functionalized with two crosslinking reagents (3-(triethoxysilyl)-propylisocyanate [TEPIC] and 3-(trimethoxysilyl) propyl methacrylate [TMPMA]) to achieve the two special molecular bridge VPBA-TEPIC and VPBA-TMPMA. Meanwhile, beta-diketone ligands (2-thenoyltrifluoroacetone [TTA], acetyl acetone [ACAC]) as the second ligands play the role of the main energy donor, which absorb abundant energy in ultraviolet-visible extent and then transfer the energy to the corresponding lanthanide ions (Eu(3+), Tb(3+)) to sensitize their emission of them. Eight binary and ternary Eu(3+), Tb(3+) hybrids with VPBA-TEPIC (VPBA-TMPMA) and TTA (ACAC) have been constructed, whose photoluminescence properties are studied in depth and suggest that the ternary hybrids show the favorable characteristic luminescent properties (longer lifetime and higher quantum efficiency).  相似文献   

4.
A series of dinuclear complexes of salicylic acid (HSal) and o-phenanthroline (Phen) with different molar ratios of Eu3+ to Y3+ have been synthesized. Their compositions are Eu(x)Y(1-x) (Sal)3(Phen) (x = 0 to approximately 1). Their UV spectra, IR spectra, and fluorescence spectra were studied. The UV spectra of the complexes reflect essentially absorption of the ligands for the fact that no obvious change of wavelength and band shape is found between the spectra of the complexes and that of the ligands except slight red shift. The IR absorption spectra indicate that salicylic acid is coordinated to the rare earth ions and chemical bonds are formed between rare earth ions and nitrogen atoms of o-phenanthroline. The fluorescence spectra of the complexes indicate that the fluorescence emission intensity of europium ion was enhanced by the addition of Y3+, which is referred to as cofluorescence. These facts show that not only the ligands but also the yttrium complex can transfer the absorbed energy to Eu3+ ion in the complexes. Formation of polynuclear complexes appears to be responsible for cofluorescence.  相似文献   

5.
合成了Eu(TTA)3·Phen和Eu0.8Y0.2(TTA)3·Phen固体配合物微晶粉末及其掺杂的SiO2凝胶样品.在300~800nm测定并解释了其光声光谱.在配体吸收处,Eu0.8Y0.2(TTA)3@Phen的光声强度低于Eu(TTA)3@Phen的光声强度;而对于配合物掺杂的凝胶样品,则情况相反.Y3+的引入改变了配合物的弛豫过程,且配合物在粉末和凝胶状态下,弛豫历程不尽相同.结合荧光光谱研究了标题化合物的发光特性,并建立了能量传递模型.  相似文献   

6.
Rare-earth ternary complexes Tb(1-x)Eu(x)(m-NBA)(3)Phen (X=1, 0.25, 0.5, 0.75, 1.0) were synthesized and characterized by IR, DTA-TG, UV, fluorescent spectra and elemental analysis. It was found that luminescence of Eu(3+) complex was enhanced by doped with Tb(3+). It is proved by TG curve that the complexes are stable, ranging from ambient temperature to 360 degrees C in air. The organic-inorganic combined structural device was fabricated, and the electroluminescence intensity of the combined structural device was improved compared with the device of the purely organic components.  相似文献   

7.
Time-resolved laser fluorescence spectroscopy (TRLFS) is an effective speciation technique for fluorescent metal ions and can be further extended by the parallel factor analysis (PARAFAC). The adsorption of Eu(3+) on kaolinite as well as gibbsite as a reference mineral was investigated by TRLFS together with batch adsorption measurements. The PAFAFAC modeling provided the fluorescence spectra, decay lifetimes, and relative intensity profiles of three Eu(3+) surface complexes with kaolinite; an outer-sphere (factor A) complex and two inner-sphere (factors B and C) complexes. Their intensity profiles qualitatively explained the measured adsorption of Eu(3+). Based on the TRLFS results in varied H(2)O/D(2)O media, it was shown that the outer-sphere complex exhibited more rapid fluorescence decay than Eu(3+) aquo ion, because of the energy transfer to the surface. Factor B was an inner-sphere complex, which became dominant at relatively high pH, high salt concentration and low Eu(3+) concentration. Its spectrum and lifetime were similar to those of Eu(3+) adsorbed on gibbsite, suggesting its occurrence on the edge face of the gibbsite layer of kaolinite. From the comparison with the spectra and lifetimes of crystalline or aqueous Eu(OH)(3), factor C was considered as a poly-nuclear surface complex of Eu(3+) formed at relatively high Eu(3+) concentration.  相似文献   

8.
Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu(3+) = 1, Tb(3+) = 2, and Gd(3+) = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {[Eu(L)(3)(H(2)O)(2)]}(n) (1) and {[Tb(L)(3)(H(2)O)].(H(2)O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb(3+) emission (Φ(overall) = 64%) thanks to the favorable position of the triplet state ((3)ππ*) of the ligand [the energy difference between the triplet state of the ligand and the excited state of Tb(3+) (ΔE) = (3)ππ* - (5)D(4) = 3197 cm(-1)], as investigated in the Gd(3+) complex. On the other hand, the corresponding Eu(3+) complex shows weak luminescence efficiency (Φ(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (ΔE = (3)ππ* - (5)D(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu(3+) and Tb(3+) ions with the general formula {[Eu(0.5)Tb(0.5)(L)(3)(H(2)O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb(3+) and Eu(3+) in a mixed lanthanide system (η = 86%).  相似文献   

9.
A series of ternary rare earth (Eu(3+), Tb(3+)) complexes are covalently coated to the 3-aminopropyltriethoxysilane functionalized multi-walled carbon nanotube (MWCNT) by a simple in situ sol-gel method by the bifunctional silylated monomer TTA-Si and TAA-Si (TTA-Si and TAA-Si are 3-(triethoxysilyl)propylisocyanate (TEPIC) modified thenoyltrifluoroacetone (TTA) and trifluoroacetylacetone (TAA), respectively). The resulting materials are characterized by Fourier transform infrared spectra, scanning electronic microscope, transmission electron microscope, thermogravimetric analysis, ultraviolet visible diffused reflection measure, photoluminescence spectra, and X-ray diffraction. The photoluminesce measurements indicated that these hybrids exhibit characteristic red and green luminescence originating from the corresponding ternary rare earth ion (Eu(3+), Tb(3+)). The luminescence quenching effect of MWCNT networks have been successfully restrained by coating a relatively thicker silica-oxygen-based organic-inorganic complex. Furthermore, the fluorescence lifetimes and emission quantum efficiencies of Eu(3+) hybrid materials are also determined.  相似文献   

10.
在乙醇体系中,以氯化铕与1,2邻苯二氧基二乙酸和二苯甲酰甲烷反应合成了三元配合物Eu-BDDA-DBM以及弱荧光离子La3+,Y3-,Yb3-和Nd3+掺杂的铕配合物.通过红外、紫外-可见、热重、荧光光谱对配合物进行了表征.红外光谱表明,单一配合物和掺杂配合物具有相似的配位结构.荧光光谱表明,La3+和Nd3+离子掺杂可以大幅度提高的铕配合物的荧光强度,其中La3+掺杂荧光强度增强最明显.  相似文献   

11.
The photoluminescence properties and energy transfer of the Eu(2+) and Mn(2+) co-doped Sr(3)Y(PO(4))(3) phosphors are investigated in detail. Two main emission bands attributed to the Eu(2+) and Mn(2+) ions are observed under UV light excitation via an efficient energy transfer process. When the Eu(2+) doping content is fixed, the emission chromaticity can be varied by simply adjusting the content of Mn(2+). The study of the behavior as a function of doping concentration indicates that the warm white-light can be obtained in a single host lattice. Furthermore, the analysis of the fluorescence decay curves based on the Inokuti-Hirayama theoretical model reveals that the dipole-quadrupole interaction is mainly responsible for the energy transfer mechanism from the Eu(2+) to Mn(2+) ions in the Sr(3)Y(PO(4))(3) phosphor. The developed phosphor exhibits a strong absorption in UV spectral region and white-light emission which may find utility as a single-component white-light-emitting UV-convertible phosphor in white LED devices.  相似文献   

12.
配合物EuxM1-x(TTA)3(H2O)2(M=La,Gd)光致发光特性   总被引:13,自引:0,他引:13  
合成了一系列组成为EuxM1-x(TTA)3(H2O)2(M=La,Gd)的固体配合物,利用红外光谱和荧光光谱研究了配合物结构和发光性质随Eu3+浓度的变化规律.红外光谱的结果表明,配合物的成份为Eu(TTA)3(H2O)2和M(TTA)3(H2O)2,没有新化合物生成.而荧光光谱的结果显示配合物的发光强度与Eu3+浓度不成线性关系,其中不发光的M(TTA)3组分对发光有增益作用.对其可能的发光机制进行了探讨.  相似文献   

13.
In this work, a facile route using simple hydrothermal reaction and sequential calcinations to synthesize 3-dimensional flower-like Y(2)O(3):Eu(3+) nanoarchitectures without employing templates or matrix for self-assembly is presented. The flower-like nanostructures are composed of nanosheets with thickness of about 30 nm, which is verified by the field-emission electron microscopy (FESEM). Influencing factors such as the dosage of reactants, the solvent, and pH are systematically investigated. The time-dependent experiments indicate a self-assembly mechanism. This method is also applicable in the preparation of other lanthanide oxides. The PL spectra of the as-synthesized Y(2)O(3):Eu(3+) are systematically studied. Both the Eu(3+) concentration and the calcinations temperature have great effect on the luminescence intensity of (5)D(0)-(7)F(2) transition. The decay curve of the (5)D(0) transition shows that the lifetime of the as-obtained Y(2)O(3):Eu(3+) is about 2.4 ms.  相似文献   

14.
According to fluorescent spectra of a series of Eu(III) ternary complexes in the three solvents EtOH, DMF and CH3CN, the fluorescence is stronger in the solvent CH3CN than in the solvents EtOH and DMF, and fluorescent intensity is contrary to the affinity of three solvents with rare earth ions. Center ions emit fluorescence mainly by an intramolecular energy transfer from the broad absorbing β-diketonate TTA, BTA or BA to the chelated rare earth ions.  相似文献   

15.
Rare earth binary complex Eu(NNA)3 (NNA, alpha-naphthylacetic acid), ternary complex Eu(NNA)3.phen (phen, 1,10-phenanthroline) and a series of dinuclear complexes with different mole ratios of Eu3+ to Gd3+ were synthesized. Many advanced approaches, such as element analysis, FTIR spectra, TG and DTA analysis, were used to determine the composition and structure of binary and ternary complex. Moreover, their fluorescence properties were studied by fluorescent spectra and lifetimes. The fluorescence spectra and decay curves of dinuclear complexes indicated that the fluorescence emission intensity was enhanced and the fluorescence lifetime was prolonged by Gd3+. The dinuclear complexes show the best properties when the mole ratio of Eu3+ to Gd3+ is 6:4. A new parameter Y, which was used to evaluate the effect of Gd3+, was introduced. In addition, the relationship of Y value and mole fraction of Gd3+ was analyzed by mathematical software. The results showed that Y value decreased by single exponential mode when the content of Gd3+ decreased.  相似文献   

16.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

17.
Well crystallized nanoplates of the (Y(0.95-x)Gd(x)Eu(0.05))(2)(OH)(5)NO(3)·nH(2)O ternary layered rare-earth hydroxides (LRHs), synthesized hydrothermally, have been investigated with emphasis on the effects of Gd(3+) substitution for Y(3+) on the structural features and optical properties. Characterizations of the materials were achieved by the combined techniques of XRD, FT-IR, TEM, DTA/TG, and optical spectroscopies. The results showed that Gd(3+) substitution leads to linearly expanded ab plane, shortened interlayer distance (c/2), and reduced hydration (smaller n value) of the crystal structure. As a consequence, the Ln(3+) partially shifts from the C(4v) to C(1) site symmetries and thus leads to systematically altered photoluminescence behaviors. Under the (7)F(0)→(5)L(6) transition excitation of Eu(3+) at 394 nm, both the (5)D(0)→(7)F(2) to (5)D(0)→(7)F(4) and the 595 nm (5)D(0)→(7)F(1) to 590 nm (5)D(0)→(7)F(1) intensity ratios linearly increase towards a higher Gd(3+) content. The incorporated Gd(3+) cations selectively sensitize emission from the C(1)-site Eu(3+) and produce a new charge transfer (CT) excitation band at ~254 nm. With this, the desired 615-nm red emission is obtainable either under intra-4f(6) transition excitation of Eu(3+) or by exciting the CT band. The materials have similar fluorescence lifetimes of 0.85 ± 0.05 ms for the 615-nm emission, irrespective of the Gd(3+) content and excitation wavelength.  相似文献   

18.
In this paper, we report the synthesis, characterization, crystal structure, and photophysical properties of a Eu(3+) complex of Eu(TTA)(3)Phen, where TTA=2-thenoyltrifluoroacetonate, and Phen=1,10-phenanthroline. Its elementary application for oxygen-sensing application is also investigated by doping it into a polymer matrix of polystyrene (PS). Experimental data suggest that the 3wt% doped Eu(TTA)(3)Phen nanofibrous membrane exhibits a high sensitivity of 3.4 towards oxygen with a good linear relationship of R(2)=0.996. In addition, the 3wt% doped Eu(TTA)(3)Phen nanofibrous membrane owns a quick response of 9s towards molecular oxygen, along with its excellent atmosphere insensitivity and photobleaching resistance. All these results suggest that both Eu(TTA)(3)Phen and Eu(TTA)(3)Phen/PS system are promising candidates for oxygen-sensing optical sensors.  相似文献   

19.
Ag colloidal nanoparticles coated with Eu(TTA)3 · 2H2O complexes were prepared, and it was found that Eu(TTA)3 · 2H2O complexes J-aggregate was formed on the surface of Ag nanoparticles according to a red shift (18.2 nm) in UV–Vis spectra. However, there had similar excitation wavelength, which was attributed to existence of Ag nanoparticles. Highly luminescent properties of Ag colloidal nanoparticles were observed, and it was believed to result from low energy transfer between Eu(III) complexes and Ag and the large electromagnetic field arising from the excitation of surface plasmon polariton of Ag nanoparticles.  相似文献   

20.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号