首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purple membranes (PMs), which consist of the photochromic membrane protein bacteriorhodopsin (BR) and lipids only, show complex thermochromic properties. Three different types of reversible temperature-dependent spectral transitions were found, involving spectral states absorbing at 460, 519, and 630 nm. These thermochromic absorption changes were analyzed in the range from 10 to 80 degrees C. In dependence on the bulk pH value, hypsochromic or bathochromic shifts in the BR absorption spectra are observed in BR gels as well as in BR films. The thermochromic changes between both purple and blue or purple and red were quantified in the CIE color system. The molecular changes causing these effects are discussed, and a model is presented in terms of intramolecular protonation equilibriums. The thermochromic properties of BR may be of interest in applications like security tags, as this feature may complement the well-known photochromic properties of BR.  相似文献   

2.
The thermal stability of the recombinant green fluorescent protein (GFPuv) expressed by Escherichia coli cells and isolated by three-phase partitioning extraction with hydrophobic interaction chromatography was studied. The GFPuv (3.5–9.0 μg of GFPuv/mL) was exposed to various pH conditions (4.91–9.03) and temperatures (75–95°C) in the 10 mM buffers: acetate (pH 5.0–7.0), phosphate (pH 5.5–8.0), and Tris-HCl (pH 7.0–9.0). The extent of protein denaturation (loss of fluorescence intensity) was expressed in decimal reduction time (D-value), the time exposure required to reduce 90% of the initial fluorescence intensity of GFPuv. For pH 7.0 to 8.0, the thermostability of GFPuv was slightly greater in phosphate buffer than in Tris-HCl. At 85°C, the D-values (pH 7.1–7.5) ranged from 7.24 (Tris-HCl) to 13.88 min (phosphate) The stability of GFPuv in Tris-HCl (pH>8.0) was constant at 90 and 95°C, and the D-values were 7.93 (pH 8.38–8.92) and 6.0 min (pH 8.05–8.97), respectively. The thermostability of GFPuv provides the basis for its potential utility as a fluorescent biologic indicator to assay the efficacy of moist-heat treatments at temperatures lower than 100°C.  相似文献   

3.
The thermal stability (60°C, 80°C, 100°C), antioxidant activity, and ultraviolet C light (UV-C) stability of standard polyphenols solutions (catechin, gallic acid, and vanillic acid) and of vegetal extracts from spruce bark and grape seeds were investigated. Exposure of the standard solutions and vegetal extracts to high temperatures revealed that phenolic compounds were also relatively stable (degradations ranged from 15 % to 30 % after 4 h of exposure). The highest antioxidant activity was obtained for ascorbic acid and gallic acid followed by catechin and caffeic acid and the grape seeds. The results show that, after 3 h of UV-C exposure, approximately 40 % of vanillic acid, 50 % of gallic acid, and 83 % of catechin were removed. Similar degradation rates were observed for vegetal extracts, with the exception of the degradation of catechin (40 %) from grape seeds. In addition, the photo-oxidation of polyphenols in the presence of food constituents such as citric acid, ascorbic acid, sodium chloride, and sodium nitrate was assessed.  相似文献   

4.
Peroxynitrates are thermally unstable intermediates (at ambient temperatures) in the atmospheric degradation of hydrocarbons. In this work, thermal lifetimes of nine peroxynitrates have been measured as a function of temperature and, for two of them, also, as a function of total pressure. In the presence of excess NO, relative concentrations of the peroxynitrates were followed in a 420 I reaction chamber as a function of time by means of longpath IR absorption using a Fourier transform spectrometer. Original data on the unimolecular decomposition rate constants are presented for the peroxynitrates RO2NO2 with R = C6H11, CH3C(O)CH2, C6H5CH2, CH2I, CH3C(O)OC(H)CH3, C6H5OCH2, (CH3)2NC(O), C6H5OC(O), and C2H5C(O). Thermal lifetimes at room temperature and atmospheric pressure are very short (in the order of seconds) for substituted methyl peroxynitrates (i.e., R'CH2O2NO2) but rather long for substituted formyl peroxynitrates (i.e., R″C(O)O2NO2). Kinetic data from this and previous work from our laboratory are used to derive structure‐stability relationships which allow an estimate of the thermal lifetimes of peroxynitrates from readily available 13C n.m.r. shift data. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 127–144, 1999  相似文献   

5.
Thermal transitions of elastomers are classified and problems concerning their stability are discussed. It is concluded that in the case of general-purpose elastomers no simple correlation exists between the energy of the bonds in the skeleton of a chain and their thermal stability. This also holds for the parameters of the physical structure of the chains. A high tendency to cross-linking, a high concentration of cross-links and their chemical structure give rise to a more perceptible effect.
Zusammenfassung Thermische Umwandlungen von Elastomeren werden klassifiziert und mit der StabilitÄt von Elastomeren zusammenhÄngende Probleme diskutiert. Es wird gefolgert, da\ bei Elastomeren für allgemeine Verwendungszwecke keine einfache Korrelation zwischen der Energie der Bindungen im Kettengerüst und der thermischen StabilitÄt besteht. Das gilt auch für die Parameter der physikalischen Struktur der Ketten. Der Effekt einer starken Neigung zur Vernetzung, der Netwerkdichte und der chemischen Konstitution der Netzwerkbrücken ist dagegen augenscheinlicher.

. , . . , , .
  相似文献   

6.
7.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

8.
The purpose of this investigation is to calculate the kinetic parameters and the kinetic model for the studied process. The results are further used to predict the system’s behaviour in various circumstances. A kinetic study regarding the ketoprofen—involving active substance’s thermal decomposition—was performed under isothermal conditions and in a nitrogen atmosphere, for the temperature steps: 260; 265; 270; 275; and 280 °C. The thermogravimetry/derivative thermogravimetry data were processed by three differential methods: isothermal–isoconversional, Friedman’s isothermal–isoconversional, and isothermal model-fittings. The obtained results are in good accordance with those obtained under non-isothermal conditions of a previous study, and confirm the necessity for the kinetic parameters to be determined, under different thermal conditions, by the adequate calculation methods.  相似文献   

9.
Cellouronic acid (CUA), (1 → 4)-β-d-polyglucuronate sodium salt, was prepared from regenerated cellulose by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation in water at pH 10. Changes in chemical structure and degree of polymerization (DP) of CUA by treatment in water under various pH and temperature conditions were studied to evaluate the stability of CUA. No depolymerization occurred on CUA in water at pH 1.0–7.0 and room temperature, while clear depolymerization took place at pH 10 and 13 by β-elimination. When heated in water at >50 °C, CUA was depolymerized by hydrolysis at pH 1.0 and 4.8, and by both hydrolysis and β-elimination at pH 7.0. Kinetic studies showed that CUA depolymerization rate constant was roughly increased with increasing the pH or temperature. Especially, the depolymerization rate constant at pH 13 was approximately 128 and 55 times greater than those at pH 1.0 and 10, respectively, at 60 °C. Activation energies of hydrolysis and β-elimination of CUA were approximately 100 and 20 kJ mol−1, respectively.  相似文献   

10.
[formula: see text] 3-Cyano epothilones 15-18 are the only examples of non-hydroxy C-3-substituted analogues. Their tubulin binding affinity and cytotoxicity provide meaningful structure-activity relationship information on the dependence of C-1/C-3 conformation upon activity. 12-Cyano epothilone 24 has improved pH stability over epothilone B, and its activity further supports the hypothesis that C-12 stereochemistry is not critical for tubulin affinity.  相似文献   

11.
Summary The combined application of thermogravimetry reactiongas chromatography and gel-permeation chromatography permits to follow the heat degradation of polyurethane polymers in inert gas, air and water-saturated environment. The examinations give information on the rate of thermal degradation, the individual volatile degradation components, the critical points of the polymer chains and on the change of their molecular-weight distribution. Gas chromatographic examinations also permit the identification of the chain-extending components of different types of polyurethanes.  相似文献   

12.
The application of thermal method is of great importance regarding the pharmaceutical problems such as the control of raw materials, the determination of purity, the qualitative and quantitative analysis of drug formulation, tests of thermal stability and compatibility and the determination of kinetic parameters etc. The purpose of a kinetic investigation is to calculate the kinetic parameters and the determination of the kinetic model for the studied process. The results are further used to predict the system’s behaviour in various circumstances. A kinetic study regarding the piroxicam—active substance’s thermal decomposition was performed under isothermal conditions and nitrogen atmosphere, for the temperature steps: 200, 205, 210, 215 and 220 °C. The TG/DTG data were processed by three differential methods: isothermal—isoconversional, Friedman’s isothermal isoconversional and isothermal model-fitting. The obtained results are in good accord between them, as well as with those obtained under non-isothermal conditions from a previous work and confirm the necessity of the kinetic parameters determining in different thermal conditions, by the adequate calculation methods.  相似文献   

13.
Fluorescence emission from dendrimers and its pH dependence   总被引:2,自引:0,他引:2  
A strong fluorescence emission was observed from different kinds of dendrimers under acidic condition. There was a remarkable difference in fluorescence properties between second and fourth generation NH2-terminated poly(amido amine) dendrimers. It can be assumed that the backbone of the dendrimer played the key role in forming the novel fluorescent center.  相似文献   

14.
Studies were undertaken to ascertain the thermal stability of several types of silicon-containing polymers. Results of thermal analysis investigations indicate that all of the polymers are unusually heat-resistant when heated in air at elevated temperatures. Solution-cast films of the polymers on aluminum showed excellent flexibility and adhesion characteristics after being heated in air for 100 hr. at 300°C. and then for 3.5 hr. at 400°C. Visual examination of the films after the heating sequence indicated that the silicon-containing polyamides and polybenzimidazole had darkened slightly, while the polyoxadiazole appeared to be unaffected in this respect. Infrared spectroscopy studies showed that all of the polymers underwent only very minor structural changes during the prolonged heating process.  相似文献   

15.
16.
The thermal behavior of anapaite, Ca2Fe2+(PO4)2·4H2O, has been studied by TG/DTG and DSC techniques, complemented by Fourier-transform IR spectroscopy. The anapaite sample, originating from Bellaver de Cerdena (Spain) was identified as such using X-ray diffraction and qualitative energy-dispersive analysis of X-rays. 57Fe Mössbauer spectroscopy at various temperatures could not detect any Fe3+. It was found from thermal analyses and IR spectroscopy that two types of hydrogen–bonded water molecules exist in the structure. This feature is related to the distance between the hydrogen atom of a water molecule and the oxygen atom of a phosphate group, the distance between both oxygen atoms and the angle O(H2O)–HO(PO4). The dehydration process proceeds in two partially overlapping steps. The removal of the last two, strongly bonded water molecules is accompanied by the decomposition of the crystal structure. From TG curves, the activation energy was calculated for different intervals of dehydration reaction. For this purpose, five slow heating rates between 0.4 and 2°C/min were applied. The activation energy for the entire process was also obtained from DSC (223 kJ/mol) and found to be in reasonable agreement with the average of the various values from the TGA (233 kJ/mol). The heat of reaction for the complete dehydration was found to be 177 kJ/mol.  相似文献   

17.
Differential scanning calorimetry (DSC) and thermogravimetry (TG) are analytical and quantitative methods capable of providing reliable, fast and reproducible results. These data allow establishing the thermal stability, purity degree and the polymorphic behavior of organic compounds. Thermal analysis of fusion and degradation processes was carried out on organonitrogen, organosulfur and organoselenium phthalazine derivatives to establish thermal stability criteria. Decomposition and fusion temperatures of 27 biological active compounds, synthesized by our research group were determined using TG and DSC. Analysis of the thermal data indicated that: (a) in general, nitrogen compounds are more stable than sulfur and selenium compounds; (b) thioderivatives possess degradation temperatures higher than selenium compounds; (c) the presence of selenium atoms in molecular structure has associated a minor thermal stability; (d) sulfide derivatives decomposition process have higher Tonset values than disulfide compounds; (e) there are differences in the stability due to groups selenol, methylseleno, and cyanoseleno; (f) the nature of the substituent located on the benzyl ring has no effects on selenophthalazines thermal stability.  相似文献   

18.
This article presents the effect of the method of NBR cross linking on the thermal properties, flammability and fire hazard of its nanocomposites containing modified montmorillonite (NanoBent or Nanofil), using test results obtained by means of a derivatograph, oxygen index and cone calorimetry. It has been found that the thermal stability and flammability of the nanocomposites investigated depend on both the rubber network structure and the type of montmorillonite. The nanoadditives used reduce the flammability of cross-linked nitrile rubber and considerably limit its fire hazard.  相似文献   

19.
Lacking a stable tertiary structure, intrinsically disordered proteins (IDPs) possess particular functions in cell regulation, signaling, and controlling pathways. The study of their unique structural features, thermal stabilities, and folding kinetics is intriguing. In this study, an identified IDP, securin, was used as a model protein. By using a quasi-static five-step (on-path) folding process, the function of securin was restored and analyzed by isothermal titration calorimetry. Fluorescence spectroscopy and particle size analysis indicated that securin possessed a compact hydrophobic core and particle size. The glass transition of securin was characterized using differential scanning microcalorimetry. Furthermore, the folding/unfolding rates (kobs) of securin were undetectable, implying that the folding/unfolding rate is very fast and that the conformation of securin is sensitive to solvent environmental change. Therefore, securin may fold properly under specific physiological conditions. In summary, the thermal glass transition behavior and undetectable kobs of folding/unfolding reactions may be two of the indices of IDP.  相似文献   

20.
The carbon, nitrogen, and oxygen K-edge spectra were measured for aqueous solutions of glycine by total electron yield near-edge X-ray absorption fine structure (TEY NEXAFS) spectroscopy. The bulk solution pH was systematically varied while maintaining a constant amino acid concentration. Spectra were assigned through comparisons with both previous studies and ab initio computed spectra of isolated glycine molecules and hydrated glycine clusters. Nitrogen K-edge solution spectra recorded at low and moderate pH are nearly identical to those of solid glycine, whereas basic solution spectra strongly resemble those of the gas phase. The carbon 1s --> pi*(C=O) transition exhibits a 0.2 eV red shift at high pH due to the deprotonation of the amine terminus. This deprotonation also effects a 1.4 eV red shift in the nitrogen K-edge at high pH. Two sharp preedge features at 401.3 and 402.5 eV are also observed at high pH. These resonances, previously observed in the vapor-phase ISEELS spectrum of glycine, have been reassigned as transitions to sigma* bound states. The observation of these peaks indicates that the amine moiety is in an acceptor-only hydrogen bond configuration at high pH. At low pH, the oxygen 1s --> pi*(C=O) transition exhibits a 0.25-eV red shift due to the protonation of the carboxylic acid terminus. These spectral differences indicate that the variations in electronic structure observed in the NEXAFS spectra are determined by the internal charge state and hydration environment of the molecule in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号