首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为了比较单线态激子与三线态激子形成截面的大小,作者将荧光染料4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) 和磷光材料factris-(2-phenylpyridine) iridium [Ir(ppy)3]共掺杂在N-vinylcarbazole (PVK)中作为发光层,制作了多层有机电致发光器件。通过对其光致发光及电致发光特性的研究,计算出Ir(ppy)3激子的形成截面比DCJTB激子的形成截面大得多。  相似文献   

2.
研究利用溶液法制备的有机磷光双重掺杂体系电致发光器件的光致发光特性与电致发光特性,并研究了在这种体系中深能级陷阱导致的器件效率衰退现象。首先利用紫外光谱仪和光致瞬态寿命测试系统对基于旋涂法制备的以宽带隙材料4,4’-bis(N-carbazolyl)-1,1’-biphenyl(CBP)为主体,绿色磷光材料tris(2-phenylpyridine) iridium(Ⅲ)(Ir(ppy)3)和红色磷光材料tris(1-phenylisoquinolinato-C2,N)iridium(Ⅲ)(Ir(piq)3)为客体材料的薄膜进行了光致发射光谱测试和薄膜在Ir(ppy)3发光峰516 nm处的光致发光寿命测试,实验发现在Ir(ppy)3掺杂比例保持定值时,随着深能级掺杂材料Ir(piq)3的引入,其光致发光光谱中Ir(ppy)3的相对发光强度减弱且发光寿命变短,当Ir(piq)3掺杂浓度继续提高时,薄膜光致发光光谱基本保持不变且Ir(ppy)3的发光寿命基本不变。实验说明在低浓度掺杂下两者的三线态能级之间存在着能量传递,但当掺杂浓度达到高浓度时,能量传递主要来自于主客体之间的传递,两者作为独立的发光中心发光。然后利用溶液法制备了发光层分别为CBP∶Ir(ppy)3,CBP∶Ir(ppy)3∶Ir(piq)3和CBP∶Ir(ppy)3∶PTB7的三组器件,器件结构为ITO/PEDOT∶PSS/Poly-TPD/EML/TPBi(15 nm)/Alq3(25 nm)/LiF(0.6 nm)/Al(80 nm)。在Ir(ppy)3和Ir(piq)3共掺杂器件和Ir(ppy)3单掺杂器件的对比实验中发现,加入一定比例的深能级材料后,器件的电致发光光谱发生改变,Ir(piq)3的相对发光强度增强,器件发光效率下降且效率滚降现象明显。通过对器件进行J-V测试,发现在Ir(ppy)3单掺杂器件中陷阱填充电流随着掺杂材料浓度的提高而提高,但在加入等浓度深能级材料Ir(piq)3后,陷阱填充电流基本保持一致。瞬态电致发光测试表明,随着Ir(ppy)3掺杂比例的提高,器件内由于陷阱载流子释放而产生的瞬时发光强度降低,这是由于Ir(ppy)3具有一定的传导电荷作用,会减少器件中的陷阱载流子,这进一步说明了具有较深能级的Ir(piq)3是限制载流子的主要能级陷阱。同时发现随反向偏压的增大,瞬态发光强度增大且发光衰减加速,这是因为位于深能级陷阱的载流子在高电压下被释放,重新复合发光,说明深能级陷阱的确限制住了大量载流子,而由于主体三线态激子具有较长的寿命,激子间相互作用产生的单线态激子在高反压下解离,从而引起三线态激子-极化子相互作用的加剧,导致发光衰减加速。在窄带隙聚合物材料PTB7与Ir(ppy)3共掺杂器件实验中发现,随着PTB7掺杂浓度提高,陷阱浓度变大且器件效率降低,具有较深能级的PTB7成为了限制载流子的深能级陷阱。因此说明在双掺杂有机磷光电致发光器件中,深能级材料会成为限制载流子的能级陷阱,引起载流子大量堆积,从而导致三线态激子与极化子相互作用加剧,使器件的发光效率衰退。  相似文献   

3.
具有穿插界面结构的高效绿光有机电致磷光器件   总被引:1,自引:0,他引:1       下载免费PDF全文
以传统有机电致磷光器件ITO/NPB/CBP∶Ir(ppy)3/BAlq/Alq3/LiF/Al为研究对象,在NPB/CBP∶Ir(ppy)3、CBP∶Ir(ppy)3/BAlq及BAlq/Alq3界面处构造交互穿插结构。器件的光电性能测试表明:交互穿插结构一方面能够降低电流密度,减少高电流密度下磷光猝灭中心的形成;另一方面能增加载流子复合界面面积,从而分散界面三线态激子,降低三线态-三线态激子的猝灭。此外,界面凸起的存在还有利于器件的光耦合输出。实验结果表明:当穿插厚度为10 nm,器件的最大电流效率达到34.0 cd/A,与传统器件的电流效率18.7 cd/A相比,提高了55%。  相似文献   

4.
从三线态激子的发光机理入手,研究了PBD作为电子传输材料对PVK:Ir(ppy)3体系的影响。实验中制备了单层器件ITO/PVK:Ir(ppy)3/PBD/Al,ITO/PVK:Ir(ppy)3:PBD/Al和双层器件,ITO/PVK:Ir(ppy)3:PBD/BCP/Al,其中PVK:Ir(ppy)3的掺杂浓度比例不变,通过改变PBD的掺杂浓度,其变化范围是PBD与PVK的质量比从0:100到20:100,制得了一系列器件,研究了它们的光致发光(PL)光谱和电致发光(EL)光谱。发现PBD这种电子传输材料的加入对器件的亮度有很大提高,当PBD与PVK质量比为10%时,器件亮度最大。  相似文献   

5.
激子形成区域随电场变化的移动会使得有机电致发光器件(OLEDs)的效率和色度发生改变,从而影响器件的性能。文章首先制备了两种OLED器件,器件1为ITO/PEDOT∶PSS/PVK∶Ir(ppy)3∶DCJTB (100∶2∶1 wt)/BCP(10 nm)/Alq3(15 nm)/Al,器件2为ITO/PEDOT∶PSS/PVK∶Ir(ppy)3(100∶2 wt)/BCP(10 nm)/Alq3(15 nm)/Al,研究了电场强度对单层多掺杂结构器件激子形成的影响。实验发现在多掺杂发光层中,随着电压的增加,Ir(ppy)3,PVK和DCJTB的发光均增强,PVK和DCJTB发光增强更快。对其发光机制进行分析,认为较高电场下,载流子获得较高能量,更容易形成高能量激子,产生宽禁带材料PVK的发光;另一方面,从能级结构分析DCJTB的带隙较窄, 俘获更多的载流子发光更强。同时,在器件的电致发光(EL)光谱发现在460 nm处一新的发射峰, 发光随着电压的增大相对减弱。为了研究460 nm发光的来源,制备了器件:ITO/PEDOT∶PSS/PVK∶BCP∶Ir(ppy)3(xy∶2 wt)/Alq3(15 nm)/Al, 改变x, y的比值研究发现,460 nm处的发光依然存在,推测此发光峰应与PVK及BCP之间有关。  相似文献   

6.
磷光材料由于可以利用电致激发所形成的单重态和三重态激子,因而可以得到接近100%的内量子效率。文章对常温下基于磷光材料Ir(ppy)3及Ir(piq)3掺杂PVK薄膜为发光层的器件的光学和电学特性进行了研究。光致发光的结果显示相同掺杂质量比下由PVK到Ir(piq)3的能量传递比到Ir(ppy)3更加困难。通过研究两种掺杂体系不同质量比的电致发光特性,可以认为这两种磷光器件的发光主要来自于磷光客体分子直接俘获载流子发光而非主体的能量传递。Ir(piq)3掺杂体系对掺杂比例的依赖更为明显,从能级结构分析,认为是由于Ir(piq)3的更低的HOMO及高的LUMO能级,而比Ir(ppy)3具有更好的载流子俘获和传输特性。  相似文献   

7.
采用不同的真空热梯度升华条件,获得了不同纯度的乙酰丙酮酸二(2-苯基吡啶)铱Ir(ppy)2(acac)。以不同纯度Ir(ppy)2(acac)为客体材料,制备了结构为ITO:MoO3/CBP/CBP:Ir(ppy)2(acac)/TPBi/LiF:Al的有机发光二极管(OLEDs),其中CBP和TPBi分别是4,4'-二(9-咔唑)联苯和1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯。评价了不同纯度磷光铱配合物制备的器件的电致发光性能,探索了磷光铱配合物纯度对器件性能的影响。结果表明:Ir(ppy)2(acac)升华后可以提高器件的稳定性,纯度高的材料可以在较低的掺杂浓度下获得较高的发光效率。  相似文献   

8.
新型双色有机电致磷光器件   总被引:4,自引:4,他引:0       下载免费PDF全文
所研究的有机电致磷光发光器件(OLED)选用了一种新型金属铱的化合物Ir(C6)2(acac),这种金属化合物由配位体香豆素C6和乙酰丙酮(acac)与金属铱化合形成。Ir(C6)2(acac)可同时作为电子传输材料和发光掺杂剂。比较香豆素C6和Ir(C6)2(acac)固体材料的光致发光谱,可见Ir(C6)2(acac)明显抑制了有机电致发光材料分子与分子之间的发光猝灭效应。采用ITO/TPD(N,N′-diphenyl-N,N′-bis(3-methyl-phenyl)-1,1′biphenyl-4,4′diamine)/Ir(C6)2(acac)/BAlq(bis(2-methyl-8-quinolinolato-N1,O8)-(1,1′-biphenyl-4-olato)aluminum)/Alq3aluminum/Liq(8-hydroxyquinolinelithium)/Al结构,可得到CIE(Commission Interationaled′Eclairage)值为x=0.43;y=0.40的橙红色发光器件,最高亮度可达3390cd/m2,最大电流效率为1.3cd/A。采用同样的器件结构以Ir(C6)2(acac)掺杂Alq3主体得到绿色发光器件,发光色的CIE坐标值为x=0.29;y=0.58,最高亮度可达8832cd/m2,最大电流效率为5.6cd/A。器件的发光机理研究表明Ir(C6)2(acac)的非掺杂器件发光以Ir(C6)2(acac)的三线态磷光为主,器件发光为橙色;在Alq3中的单掺杂器件以Alq3和Ir(C6)2(acac)的荧光为主,同时有小比例Ir(C6)2(acac)的三线态磷光成分存在,器件总体发光为绿色。  相似文献   

9.
牛巧利  章勇  范广涵 《物理学报》2009,58(12):8630-8634
因电致发光效率高和器件制备工艺简单,聚合物为主体的绿色磷光电致发光成为一个研究热点.共轭聚合物的三线态能级一般低于绿色磷光材料的三线态能级,易对磷光的发光引起猝灭导致低的发光效率,所以较少被用作绿色磷光材料的主体.通过增加聚乙烯基咔唑(PVK)作为空穴传输层,获得了高发光效率的共轭聚合物聚芴(PFO)作主体绿色磷光发射,甚至高于相同条件下以PVK为主体的绿色磷光发射.究其原因,PVK的电子阻挡作用使发光中心靠近PVK与PFO的界面,界面处PVK因为其高的三线态能级增强了绿色磷光的发光.当三-(2-苯基吡啶)-Ir(Ir(ppy)3)掺杂浓度为2%时得到了最高的亮度效率24.8 cd/A,此时的电流密度为4.65 mA/cm2,功率效率为11 lm/W,最高亮度达到35054 cd/m2,色坐标是(0.39,0.56). 关键词: 共轭聚合物 磷光 绿光发光  相似文献   

10.
新型红色磷光铱配合物的合成与电致发光性能   总被引:1,自引:0,他引:1       下载免费PDF全文
设计并合成了含羟基配体8-苯并噻唑基2-萘酚(HNBT),并以其为辅助配体、2-苯基吡啶(ppy)为第一配体合成了红色磷光铱配合物Ir(ppy)2(NBT)。采用真空蒸镀的方法,以Ir(ppy)2(NBT)为发光中心制备了红色有机电致磷光器件,详细研究了配合物Ir(ppy)2(NBT)的热稳定性、光物理与电致发光性能。值得注意的是,配合物Ir(ppy)2(NBT)的发射谱图近似于高斯形状,只有一个位于614 nm的发射主峰,没有肩峰出现,且半峰宽仅为65 nm;此外,基于配合物Ir(ppy)2(NBT)的最佳器件的最大亮度和效率分别是6 400 cd/m2和4.53 cd/A。  相似文献   

11.
鲁晶 《光谱实验室》2009,26(5):1306-1309
将磷光材料三-(2-苯基吡啶)-铱[Ir(ppy)3]掺杂在聚乙烯基咔唑(PVK)中作为发光层,制作了多层有机电致发光器件。采用常规的光电测量方法,研究其光致发光及电致发光特性,得到了激子形成截面随电压的变换关系。  相似文献   

12.
Ir(PPY)3掺杂PVK的电致发光机理   总被引:5,自引:4,他引:1       下载免费PDF全文
近几年来发展起来的电致磷光(electrophosphorescence)是有机发光二极管(OLED)研究的新生长点。对电致磷光发光机理的研究随即得到了人们普遍的关注。比较了不同正向偏压条件下Ir(PPY)3掺杂聚乙烯基咔唑(PVK)的光致发光(PL)和电致发光(EL)光谱。研究结果显示在电场和注入电流的共同作用下,PL光谱中基质PVK发光的相对强度并没有发生显著的变化。电场或注入载流子不会影响PVK向Ir(PPY)3的能量传递。磷光掺杂聚合物EL主要是由于载流子在掺杂磷光分子上的直接复合,而不是由基质向磷光掺杂分子的能量传递。  相似文献   

13.
铜配合物的光物理与电致发光性能   总被引:1,自引:1,他引:0  
何琳  马於光  沈家骢 《发光学报》2003,24(6):620-623
以中心原子为铜的磷光材料Cu4(C≡Cph)4L2[L=1,8-bis(diphenylphosphino)-3,6-dioxaoctane](简称Cu4)作为掺杂材料,选用空穴传输材料聚乙烯基咔唑(PVK)为母体材料,制作结构为ITO/Cu4PVK/TAZ/Mg:Ag/Ag的双层器件。其发光颜色随掺杂的变化而改变,在较高掺杂浓度的条件下,可观察到单纯Cu4的发光,即实现了单重态到三重态的能量转移。着重讨论了主客体材料间的能量转移过程,并研究了影响器件效率的外界因素如氧气的猝灭对Cu4发光强度的影响。  相似文献   

14.
Polyvinyl carbazole (PVK) film has been prepared by solution method. Its absorption, photoluminescence (PL) and electroluminescence (EL) have been studied. For PL and absorption studies, film of PVK was prepared by spreading PVK solution on clean glass plate. The dried film was taken out of the glass plate and used for absorption, thickness measurement and PL studies. The film is transparent in the visible region and absorption starts at 340 nm wavelength. The absorption peaks are obtained at 280, 250 and 220 nm, indicating that optical gap of film is 3.65 eV and molecular orbitals exist at 4.43, 4.96 and 5.64 eV. PL studies reveal that excitation by violet light gives luminescence at 430, 480 and 690 nm. For EL studies, cell is prepared by depositing PVK film on a portion of conducting glass plate and taking aluminum foil as second electrode. It is observed from the characteristics that the current varies linearly, where as EL intensity varies non-linearly with increasing voltage. Higher brightness has been observed at higher frequencies. EL spectrum shows a sharp peak at 400 nm and a broad and less intense peak at 700 nm, which are attributed to radiative decay of singlet exciton and defect centers, respectively.  相似文献   

15.
The triplet to singlet exciton formation ratio in a MEH-PPV light-emitting diode is measured by comparing the triplet-induced absorptions with optical and electric excitations at the same singlet exciton density. The ratio is a strong universal decreasing function of the averaged electric field. Using 4 ns for singlet to triplet intersystem crossing time, the ratio is significantly larger than the spin-independent value 3 at intermediate field but is reduced to about 2 for higher field.  相似文献   

16.
Organic light-emitting diodes were fabricated with a structure of indium-tin-oxide (ITO)/poly(N-vinylcarzole)(PVK):4-(dicyanom-ethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)/8-tris-hydroxyquinoline aluminum (Alq3)/lithium fluoride (LiF)/Al. The energy transfer from PVK to Alq3 then to DCJTB and the charge trapping processes were investigated by employing the photoluminescence (PL) and electroluminescence (EL) spectra. With increasing thickness of the Alq3 layer, the PL and EL emission from PVK were decreased gradually, which indicated that the effective energy transfer occurred from PVK to Alq3 and then from Alq3 to DCJTB. At the same time, we found that the exciton recombination zone could be adjusted by controlling the Alq3 layer thickness and the applied voltages. The effects of different DCJTB concentrations on the optical and electrical characteristics of the devices were investigated, and an obvious red-shift was observed with the DCJTB dopant concentrations increasing in the PL and EL spectra.  相似文献   

17.
对常温下磷光染料Ir(ppy)3掺杂PVK薄膜的光致发光(PL)和电致发光(EL)特性进行了研究。器件结构为ITO/PEDOT:PSS/PVK:Ir(ppy)3/BCP/Alq3/Al。实验发现随磷光材料掺杂浓度的不同,器件的发光性能发生变化。当浓度适宜时,主体材料PVK的发光很弱,主要为Ir(ppy)3的磷光发射。通过L-I-V特性曲线的比较,掺杂浓度为5%的光电性能最好,说明器件在掺杂浓度为5%时效果最佳。  相似文献   

18.
We explore the magnetoelectroluminescence (MEL) of organic light-emitting diodes by evaluating the magnetic-field dependent fraction of singlet excitons formed. We use two- and multisite polaron-hopping models with spin mixing by hyperfine fields and different singlet and triplet exciton formation rates k(S) and k(T). A huge MEL is predicted when exciton formation is in competition with spin mixing and when k(T) is significantly larger than k(S). This competition also leads to a low-field structure in the MEL that is in agreement with recent experiments.  相似文献   

19.
High performance polymer light-emitting diodes (PLEDs) based on a phosphor of noble metal complex bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] doped in poly(N-vinylcarbazole) (PVK) host with various concentration were demonstrated. The photoluminescence (PL) and electroluminescence (EL) spectra of the PLEDs exhibited an emission intensity decrease of PVK and a gradually enhanced feature of (pbi)2Ir(acac) with increased doping concentration. The device with a 5 wt% (pbi)2Ir(acac) doped PVK system showed a high power efficiency of 3.84 lm/W and a luminance of 26,006 cd/m2. The results indicated that both energy transfer and charge trapping have a significant influence on the performance of PLEDs. The devices have a broadened EL spectrum of full-width at half-maximum (FWHM) more than 100 nm, which can be realized for WOLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号