首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In bimatrix games the Bishop-Cannings theorem of the classical evolutionary game theory does not permitpure evolutionarily stable strategies (ESSs) when a mixed ESS exists. We find the necessary form of two-qubit initialquantum states when a switch-over to a quantum version of the game also changes the evolutionary stability of a mixedsymmetric Nash equilibrium.  相似文献   

2.
The interaction of competing agents is described by classical game theory. It is now well known that this can be extended to the quantum domain, where agents obey the rules of quantum mechanics. This is of emerging interest for exploring quantum foundations, quantum protocols, quantum auctions, quantum cryptography, and the dynamics of quantum cryptocurrency, for example. In this paper, we investigate two-player games in which a strategy pair can exist as a Nash equilibrium when the games obey the rules of quantum mechanics. Using a generalized Einstein–Podolsky–Rosen (EPR) setting for two-player quantum games, and considering a particular strategy pair, we identify sets of games for which the pair can exist as a Nash equilibrium only when Bell's inequality is violated. We thus determine specific games for which the Nash inequality becomes equivalent to Bell's inequality for the considered strategy pair.  相似文献   

3.
We study a quantum game played by two players with restricted multiple strategies. It is found that in this restricted quantum game Nash equilibrium does not always exist when the initial state is entangled. At the same time,we find that when Nasli equilibrium exists the payoff function is usually different from that in the classical counterpart except in some special cases. This presents an explicit example showing quantum game and classical game may differ.When designing a quantum game with limited strategies, the allowed strategy should be carefully chosen according to the type of initial state.  相似文献   

4.
We study a quantum game played by two players with restricted multiple strategies. It is found that in this restricted quantum game Nash equilibrium does not always exist when the initial state is entangled. At the same time,we find that when Nash equilibrium exists the payoff function is usually different from that in the classical counterpart except in some special cases. This presents an explicit example showing quantum game and classical game may differ.When designing a quantum game with limited strategies, the allowed strategy should be carefully chosen according to the type of initial state.  相似文献   

5.
The well-known refinement of the Nash Equilibrium (NE) called an Evolutionarily Stable Strategy (ESS) is investigated in the quantum Prisoner's Dilemma (PD) game that is played using an Einstein-Podolsky-Rosen type setting. Earlier results report that in this scheme the classical NE remains intact as the unique solution of the quantum PD game. In contrast, we show here that interestingly in this scheme a non-classical solution for the ESS emerges for the quantum PD.  相似文献   

6.
The Nash equilibrium plays a crucial role in game theory. Most of results are based on classical resources. Our goal in this paper is to explore multipartite zero-sum game with quantum settings. We find that in two different settings there is no strategy for a tripartite classical game being fair. Interestingly, this is resolved by providing dynamic zero-sum quantum games using single quantum state. Moreover, the gains of some players may be changed dynamically in terms of the committed state. Both quantum games are robust against the preparation noise and measurement errors.  相似文献   

7.
We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.  相似文献   

8.
《Physics letters. A》2001,286(4):245-250
We study the evolutionary stability of Nash equilibria (NE) in a symmetric quantum game played by the recently proposed scheme of applying ‘identity’ and ‘Pauli spin-flip’ operators on an initial state with classical probabilities. We show that in this symmetric game dynamic stability of a NE can be changed when the game changes its form, for example, from classical to quantum. It happens even when the NE remains intact in both forms.  相似文献   

9.
We study the effect of decoherence on quantum Monty Hall problem under theinfluence of amplitude damping, depolarizing, and dephasing channels. It isshown that under the effect of decoherence, there is a Nash equilibrium ofthe game in case of depolarizing channel for Alice's quantum strategy.Whereas in case of dephasing noise, the game is not influenced by thequantum channel. For amplitude damping channel, Bob's payoffs are foundsymmetrical about a decoherence of 50% and the maximum occurs at this value of decoherence for his classical strategy. However, it is worth-mentioning that in case of depolarizing channel, Bob's classical strategy remains always dominant against any choice of Alice's strategy.  相似文献   

10.
Quantum game theory is a new interdisciplinary field between game theory and system engineering research. In this paper, we extend the classical inspection game into a quantum game version by quantizing the strategy space and importing entanglement between players. Our results show that the quantum inspection game has various Nash equilibria depending on the initial quantum state of the game. It is also shown that quantization can respectively help each player to increase his own payoff, yet fails to bring Pareto improvement for the collective payoff in the quantum inspection game.  相似文献   

11.
曹帅  方卯发  郑小娟 《中国物理》2007,16(4):915-918
It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of 0≤p≤0.622 (p is the quantum noise parameter), and then disappears in the range of 0.622 〈 p≤ 1. Increasing the amount of quantum noise leads to the reduction of the quantum player's payoff.  相似文献   

12.
The effect of quantum noise on the restricted quantum game   总被引:1,自引:0,他引:1       下载免费PDF全文
曹帅  方卯发 《中国物理》2006,15(1):60-65
It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of 0 〈 p ≤ 0.422 (p is the quantum noise parameter), while two special Nash equilibria appear in the range of 0.422 〈 p 〈 1. The advantage that the quantum player diminished only in the limit of maximum quantum noise. Increasing the amount of quantum noise leads to the increase of the classical player's payoff and the reduction of the quantum player's payoff, but is helpful in forming two Nash equilibria.  相似文献   

13.
Quantum systems are easily affected by external environment. In this paper, we investigate the influences of external massless scalar field to quantum Prisoners’ Dilemma (QPD) game. We firstly derive the master equation that describes the system evolution with initial maximally entangled state. Then, we discuss the effects of a fluctuating massless scalar field on the game’s properties such as payoff, Nash equilibrium, and symmetry. We find that for different game strategies, vacuum fluctuation has different effects on payoff. Nash equilibrium is broken but the symmetry of the game is not violated.  相似文献   

14.
Nash equilibria and correlated equilibria of classical and quantum games are investigated in the context of their Pareto efficiency. The examples of the prisoner’s dilemma, battle of the sexes and the game of chicken are studied. Correlated equilibria usually improve Nash equilibria of games but require a trusted correlation device susceptible to manipulation. The quantum extension of these games in the Eisert–Wilkens–Lewenstein formalism and the Frąckiewicz–Pykacz parameterization is analyzed. It is shown that the Nash equilibria of these games in quantum mixed Pauli strategies are closer to Pareto optimal results than their classical counter-parts. The relationship of mixed Pauli strategies equilibria and correlated equilibria is also studied.  相似文献   

15.
A quantum system at equilibrium is represented by a corresponding classical system, chosen to reproduce the thermodynamic and structural properties. The objective is to develop a means for exploiting strong coupling classical methods (e.g., MD, integral equations, DFT) to describe quantum systems. The classical system has an effective temperature, local chemical potential, and pair interaction that are defined by requiring equivalence of the grand potential and its functional derivatives with respect to the external and pair potentials for the classical and quantum systems. Practical inversion of this mapping for the classical properties is effected via the hypernetted chain approximation, leading to representations as functionals of the quantum pair correlation function. As an illustration, the parameters of the classical system are determined approximately such that ideal gas and weak coupling RPA limits are preserved (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We introduce an analytical model to study the evolution towards equilibrium in spatialgames, with ‘memory-aware’ agents, i.e., agents that accumulate their payoff over time. Inparticular, we focus our attention on the spatial Prisoner’s Dilemma, as it constitutes anemblematic example of a game whose Nash equilibrium is defection. Previous investigationsshowed that, under opportune conditions, it is possible to reach, in the evolutionaryPrisoner’s Dilemma, an equilibrium of cooperation. Notably, it seems that mechanisms likemotion may lead a population to become cooperative. In the proposed model, we map agentsto particles of a gas so that, on varying the system temperature, they randomly move. Indoing so, we are able to identify a relation between the temperature and the finalequilibrium of the population, explaining how it is possible to break the classical Nashequilibrium in the spatial Prisoner’s Dilemma when considering agents able to increasetheir payoff over time. Moreover, we introduce a formalism to study order-disorder phasetransitions in these dynamics. As result, we highlight that the proposed model allows toexplain analytically how a population, whose interactions are based on the Prisoner’sDilemma, can reach an equilibrium far from the expected one; opening also the way todefine a direct link between evolutionary game theory and statistical physics.  相似文献   

17.
We study the possible influence of a not necessarily sincere arbiter on the course of classical and quantum 2×2 games and we show that this influence in the quantum case is much bigger than in the classical case. Extreme sensitivity of quantum games on initial states of quantum objects used as carriers of information in a game shows that a quantum game, contrary to a classical game, is not defined by a payoff matrix alone but also by an initial state of objects used to play a game. Therefore, two quantum games that have the same payoff matrices but begin with different initial states should be considered as different games.  相似文献   

18.
Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv:1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners’ Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game’s properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.  相似文献   

19.
In a graphical game agents play with their neighbors on a graph to achieve an appropriate state of equilibrium. Here relevant problems are characterizing the equilibrium set and discovering efficient algorithms to find such an equilibrium (solution). We consider a representation of games that extends over graphical games to deal conveniently with both local a global interactions and use the cavity method of statistical physics to study the geometrical structure of the equilibria space. The method also provides a distributive and local algorithm to find an equilibrium. For simplicity we consider only pure Nash equilibria but the methods can as well be extended to deal with (approximated) mixed Nash equilirbia.  相似文献   

20.
The aim of this paper is to investigate Cournot-type competition in the quantum domain with the use of the Li-Du-Massar scheme for continuous-variable quantum games. We derive a formula which, in a simple way, determines a unique Nash equilibrium. The result concerns a large class of Cournot duopoly problems including the competition, where the demand and cost functions are not necessary linear. Further, we show that the Nash equilibrium converges to a Pareto-optimal strategy profile as the quantum correlation increases. In addition to illustrating how the formula works, we provide the readers with two examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号