首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The method of successive approximations is used to determine the thermoelastoplastic stress-strain state of isotropic and transversally isotropic laminated shells of revolution under axisymmetric loading. Hill’s theory of plasticity with isotropic hardening is used to describe the deformation of transversely isotropic materials, while the theory of deformation along paths of small curvature is used to describe the deformation of isotropic materials. The elastoplastic stress-strain state of a two-layer cylindrical shell under mechanical and thermal loads is analyzed __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 6, pp. 71–80, June 2006.  相似文献   

2.
The paper presents a technique for numerical analysis of the elastoplastic stress-strain state of flexible laminated shells of revolution made of isotropic and transversely isotropic materials and subjected to axisymmetric loading and heating. The technique is based on the Kirchhoff-Love hypotheses for the whole laminate. The deformation of the isotropic materials is described using the theory of deformation along paths of small curvature. The deformation of the transversely isotropic material is described using the flow theory with isotropic hardening. The process of loading is divided into steps at each of which the stress-strain state is determined by the method of successive approximations. A numerical example is given __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 12, pp. 76–86, December, 2006.  相似文献   

3.
A technique is developed for determination of the axisymmetric thermoelastoplastic stress-strain state of branched laminated transversally isotropic shells of revolution under loads that cause the meridional stress state and torsion. The method is based on the rectilinear-element hypotheses for the whole package of layers. To describe the processes of active elastoplastic deformation of a transversally isotropic material, deformation-type equations, which are constructed without recourse to the plastic-potential existence condition, are used. The scalar functions in the constitutive equations depend on the shear-strain rate and temperature. The solution of the problem is reduced to numerical integration of systems of differential equations. An example of determination of the elastoplastic state of a two-layer cylindrical shell stiffened with a rigid ring support is presented. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 4, pp. 125–131, April, 2000.  相似文献   

4.
A method is proposed for the numerical analysis of the thermoelastoplastic stress-strain state of laminated shells of revolution, made of isotropic and orthotropic materials, under axisymmetric loading. The method is based on the Kirchhoff-Love hypotheses for a layer stack, the theory of deformation along paths of small curvature for isotropic materials, and Hills theory of flow with isotropic hardening for orthotropic materials. The problem is solved by the method of successive approximations. A numerical example is given.__________Translated from Prikladnaya Mekhanika, Vol. 40, No. 12, pp. 84–91, December 2004.  相似文献   

5.
Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 27, No. 8, pp. 59–68, August, 1991.  相似文献   

6.
7.
Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 25, No. 3, pp. 24–31, March, 1989.  相似文献   

8.
9.
Analysis of laminated piezoelectric cylindrical shells   总被引:2,自引:0,他引:2  
A new method is developed for three-dimensional stress analysis of laminated piezoelectric cylindrical shell with simple support. The shell can be subjected to various applied loadings, including distributed body force, inner and outer surface traction and potential. Each layer of the shell can be piezoelectric or elastic/dielectric, with perfect bonding assumed between each interface. The governing equations are solved by the state-space technique. Numerical results are presented to show the sensing and actuating effects of three-layered piezoelectric cylindrical shell. The project supported by the National Natural Science Foundation of China (19572027)  相似文献   

10.
11.
Institute of Mechanics, Ukrainian Academy of Sciences, Kiev. Translated from Priklanaya Mekhanika, Vol. 28, No. 1, pp. 63–69, January, 1992.  相似文献   

12.
13.
14.
This paper presents an exact solution for a simply-supported and laminated anisotropic cylindrical shell strip with imperfect bonding at the off-axis elastic layer interfaces and with attached anisotropic piezoelectric actuator and sensor subjected to transverse loading. In this research, the imperfect interface conditions are described in terms of linear relations between the interface tractions in the normal and tangential directions, and the respective discontinuities in displacements. The solution for an elastic (or piezoelectric) layer of the smart laminated cylindrical shell strip is obtained in terms of the six-dimensional (or eight-dimensional) pseudo-Stroh formalism, solution for multilayered system is then derived based on the transfer matrix method. Finally, a numerical example is presented to demonstrate the effect of imperfect interface on the static response of the smart laminated cylindrical shell. The derived solutions can serve as benchmark results to assess various approximate shell theories and numerical methods.  相似文献   

15.
The stress-strain state of noncircular shells has been analyzed based upon solution of boundary value static problems of variable shell thickness using the methods of spline-collocation and discrete orthogonization. Shell weight was preserved depending on the degree of change in the thickness and the value of the eccentricity. Three classes of problems were considered in which the thickness varied along the generatrix, the guide, and in two coordinate directions; data are presented about the deflection and tangential force in the cross section under different values of the parameters. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev, Ukraine, Translated from Prikladnaya Mekhanika, Vol. 35, No. 6, pp. 39–47, June, 1999.  相似文献   

16.
17.
The elastoplastic state of thin cylindrical shells with two equal circular holes is analyzed with allowance made for finite deflections. The shells are made of an isotropic homogeneous material. The load is internal pressure of given intensity. The distribution of stresses along the hole boundary and in the stress concentration zone (when holes are closely spaced) is analyzed by solving doubly nonlinear boundary-value problems. The results obtained are compared with the solutions that allow either for physical nonlinearity (plastic strains) or geometrical nonlinearity (finite deflections) and with the numerical solution of the linearly elastic problem. The stresses near the holes are analyzed for different distances between the holes and nonlinear factors.Translated from Prikladnaya Mekhanika, Vol. 40, No. 10, pp. 107–112, October 2004.  相似文献   

18.
19.
20.
Delamination growth of laminated composite cylindrical shells   总被引:1,自引:0,他引:1  
The local buckling may occur in delaminated cylindrical shells under axial compression. This often causes delamination growth and structure failure. Based on the variational principle of moving boundary, in this paper, the postbuckling governing equations for the laminated cylindrical shells are derived, and the corresponding boundary and matching conditions are given. At the same time, according to the Griffith criterion, the formulas of energy release rate along the delamination front are obtained and the delamination growth is studied. In the numerical calculation, the delamination growth of axisymmetrical laminated cylindrical shells is analyzed, and the effects of delamination sizes and depths, the boundary conditions, the material properties and the laminate stacking sequences on delamination growth are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号