首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of variation in average diameter and surface area of nanocomposite fibers on electromagnetic interference (EMI) shielding of multi-walled carbon nanotubes (MWCNTs)/polyvinylpyrrolidone (PVP) fibers were investigated in this paper. The EMI shielding effectiveness of electrospun nanocomposite fibers were measured in the X-band frequency range 8.2–12.4 GHz. The electrical conductivity and EMI shielding behaviors of the nanocomposite fibers were reported as function of average diameter and surface area of MWCNTs/PVP nanocomposite fibers. The electrical conductivity measurements demonstrate using thinner nanocomposite fibers results in a lower limit of electrical resistivity, better electrical conductivity performance. The EMI shielding efficiency of thinner nanocomposite fibers increased up to 42 dB. The EMI shielding data for MWCNTs/PVP nanocomposite fibers with various average diameter and surface area showed that absorption was the major shielding mechanism and reflection was the secondary shielding mechanism. It can be related to higher specific surface area of thinner electrospun MWCNTs/PVP nanocomposite fibers that means more surface area for radiative scatter and absorption leading to higher EMI shielding performance.  相似文献   

2.
陈枫  傅强 《高分子科学》2017,35(12):1497-1507
In this article,hybrid fillers with different dimensions,namely,2-dimensional (2-D) expanded graphite (EG) and 1-dimensional (1-D) multi-walled carbon nanotubes (CNTs),were added to aromatic nylon MXD6 matrix via melt-blending,to enhance its thermal and electrical conductivity as well as electromagnetic interference shielding effectiveness (EMI SE).For ternary composites of MXD6/EG/CNTs,the electrical conductivity reaches up nine orders of magnitude higher compared to that of the neat MXD6 sample,which tumed the polymer-based composites from an insulator to a conductor,and the thermal conductivity has been enhanced by 477% compared with that of neat MXD6 sample.Meanwhile,the EMI SE of ternary composite reaches ~50 dB at the overall filler loading of only 18 wt%.This work can provide guidance for the preparation of polymer composites with excellent thermal and electrical conductivity via using hybrid filler.  相似文献   

3.
《中国化学快报》2020,31(4):1026-1029
The demand for flexible and freestanding electromagnetic interference(EMI) shielding materials are more and more urgent to combat with serious electromagnetic(EM) radiation pollution.Twodimensional Ti_3C_2T_x is considered as promising EMI shielding material to graphenes because of the low cost and high electrical conductivity.However,the shielding performance still needs to be optimized to decrease the reflection effectiveness(SE_R) and increase absorption effectiveness(SEA).Herein,we prepared Ti_3C_2T_x-bonded carbon black films with a porous structure.The SE_R decreased from 20 dB to12 dB and the SEA increased from 31 dB to 47 dB.The best EMI shielding effectiveness can be as high as60 dB with SE_A of 15 dB and SE_R of45 dB.Their calculated specific shielding effectiveness can be as high as8718 dB cm~2/g.These results indicate that the porous structure can enhance the absorption of the EMI shielding films,resulting from the enhanced scattering and reflectio n.Conseque ntly,this work provides a promising MXene-based EMI shielding film with lightweight and flexibility.  相似文献   

4.
Processing, electrical, and electromagnetic interference (EMI) shielding behaviors of carbon nanotube (CNT)/acrylonitrile–butadiene–styrene (ABS) nanocomposites were studied as function of CNT concentration. The nanocomposites were prepared by melt mixing followed by compression molding. The selective and good level of dispersion of CNT in the styrene–acrylonitrile section of the ABS polymer was found to create conductive networks in the ABS matrix at a nanofiller loading of 0.75 wt %. At this nanofiller loading, the nanocomposite electrical conductivity was 10?5 S/m. This conductivity makes the nanocomposite suitable for electrostatic discharge protection applications. The EMI shielding effectiveness of the nanocomposites increased with the increase in nanofiller concentration. In the 100–1500 MHz frequency range, 1.1 mm thick plates made of ABS nanocomposite filled with 5 wt % CNT exhibit an EMI shielding effectiveness of 24 dB. At this shielding level, the nanocomposite is suitable for a broad range of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
Herein, we report the synthesis of a graphene/polymer composite via a facile and straightforward approach for electromagnetic interference (EMI) shielding applications. Polystyrene (PS) beads were added in graphene oxide (GO)/water solution followed by the addition of hydroiodic acid (HI) for in situ reduction of GO. The composite solution (rGO/PS) was filtered, hot compressed and tested for EMI shielding and dielectric measurements. A 2-mm thick segregated rGO/PS sample with 10 wt% filler loading delivered a high EMI shielding effectiveness (SE) of 29.7 dB and an AC electrical conductivity of 21.8 S m?1, which is well above the commercial requirement for EMI shielding applications. For comparison with the segregated rGO/PS composite, a control polymer composite sample utilizing a thermally reduced graphene oxide was synthesized by following a conventional coagulation approach. The as-synthesized conventional rGO/PS yield an EMI SE of 14.2 dB and electrical conductivity of 12.5 S m?1. The high EMI shielding of segregated rGO/PS is attributed to the better filler-to-filler contact among graphene layers surrounded by PS beads and also to the better reduction and preservation of graphene structure during reduction process that makes the low temperature chemically reduced segregated rGO/PS approach a viable route compared to high temperature thermally reduced conventional rGO/PS approach.  相似文献   

6.
To transform tall goldenrods, which are invasive alien plant that destroy the ecosystem of South Korea, into useful materials, cellulose fibers isolated from tall goldenrods are applied as EMI shielding materials in this study. The obtained cellulose fibers were blended with CNTs, which were used as additives, to improve the electrical conductivity. TGCF/CNT papers prepared using a facile paper manufacturing process with various weight percent ratios and thickness were carbonized at high temperatures and investigated as EMI shielding materials. The increase in the carbonization temperature, thickness, and CNT content enhanced the electrical conductivity and EMI SE of TGCF/CNT carbon papers. TGCF/CNT-15 papers, with approximately 4.5 mm of thickness, carbonized at 1300 °C exhibited the highest electrical conductivity of 6.35 S cm−1, indicating an EMI SE of approximately 62 dB at 1.6 GHz of the low frequency band. Additionally, the obtained TGCF/CNT carbon papers were flexible and could be bent and wound without breaking.  相似文献   

7.
张扬  温变英 《高分子科学》2015,33(6):899-907
A novel asymmetric Ni/PVC film has been developed by solution casting method. The structure, electrical conductivity, electromagnetic interference(EMI) shielding, and impact resistance were investigated. The results showed that the Ni particles were asymmetrically distributed along the thickness direction in the film. The top surface resistivity increased with film thickness, while the bottom surface exhibited the different trend. EMI shielding effectiveness(SE) depended on formation of closed packed conductive Ni network, which was influenced by both Ni content and film thickness. A linear relationship was observed between EMI SE and film thickness. The films with lower Ni content showed the faster increasing rate of EMI SE with film thickness. Some of the films show appreciably high EMI SE( 40 d B), indicating the promising application in EMI shielding field. Moreover, the films exhibit different impact performance under different impacting directions. All the experimental facts demonstrate that the asymmetric structure endows the film achieving high-performance EMI shielding function.  相似文献   

8.
Highly conducting polyaniline (PANi)-coated multi-walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization method for electromagnetic interference shielding. The thickness of the PANi coatings was controlled by the oxyfluorination treatment on the multi-walled carbon nanotubes and analyzed with both SEM and TEM. The oxyfluorination with higher oxygen content produced more hydrophilic functional groups on the surface of multi-walled carbon nanotubes. The functional groups led to the well distribution and coating of PANi on the multi-walled carbon nanotubes resulting in the higher interfacial affinity between them. The uniform coating of PANi on MWCNTs by controlling the oxyfluorination conditions also played a crucial role in increasing the electrical conductivity of nanocomposites. The improved interfacial affinity resulted in the higher electromagnetic interference (EMI) SE of 47.03?dB based on the synergistic combination of the conductive components. The EMI shielding mechanism of PANi on MWCNTs suggested that EMI was mainly shielded by adsorption to avoid secondary EMI.  相似文献   

9.
鄢定祥 《高分子科学》2016,34(12):1490-1499
An electromagnetic interference (EMI) shielding composite based on ultrahigh molecular weight polyethylene (UHMWPE) loaded with economical graphite-carbon black (CB) hybrid fillers was prepared via a green and facile methodology, i.e., high-speed mechanical mixing combined with hot compression thus avoiding the assistance of the intensive ultrasound dispersion in volatile organic solvents. In this composite, the graphite-CB hybrid fillers were selectively distributed in the interfacial regions of UHMWPE domains resulting a typical segregated structure. Thanks to the specific morphology of segregated conductive networks along with the synergetic effect of large-sized graphite flakes and small-sized CB nanoparticles, a low filler loading of 7.7 vol% (15 wt%) yielded the graphite-CB/UHMWPE composites with a satisfactory electrical conductivity of 33.9 S/m and a superior shielding effectiveness of 40.2 dB, manifesting the comparable value of the pricey large-aspect-ratio carbon nanofillers (e.g., carbon nanotubes and graphene nanosheets) based polymer composites. More interestingly, with the addition of 15 wt% graphite-CB (1/3, W/W) hybrid fillers, the tensile strength and elongation at break of the composite reached 25.3 MPa and 126%, respectively; with a remarkable increase of 58.1% and 2420% over the conventional segregated graphite/UHMWPE composites. The mechanical reinforcement could be attributed to the favor of the small-sized CB particles in the polymer molecular diffusion between UHMWPE domains which in turn provided a stronger interfacial adhesion. This work provides a facile, green and affordable strategy to obtain the polymer composites with high electrical conductivity, efficient EMI shielding, and balanced mechanical performance.  相似文献   

10.
The recent development in telecommunication technology has led electromagnetic interference (EMI) to a serious threat to both electronic devices and living beings. In this work, we designed a highly efficient EMI shielding material by taking advantage of both carbonaceous hybrid filler and double percolation phenomenon. Here, a flexible, lightweight microwave absorbing conductive polymer composite was fabricated by employing poly (ethylene‐co‐methyl acrylate) and ethylene octene copolymer (EMA/EOC) binary blend as the matrix and multiwall carbon nanotube carbon black (MWCNT/CB) hybrid filler as the conductive moiety. We investigated the effect of MWCNT content in the hybrid composite on mechanical, thermomechanical, electrical, and shielding efficiency. A total EMI shielding efficiency of ?37.4 dB in the X band region was attained with 20 wt% hybrid filler containing 50 wt% MWCNT along with promising mechanical properties.  相似文献   

11.
Carbon black-based conductive rubber composites have important impacts on electromagnetic interference(EMI) shielding applications. However, an excessive amount of carbon black in the recipes of these conductive rubbers has caused their weak elasticity. Herein, hollow carbon black(HCB) particles were used to tune the elasticity of conductive rubber composites. Unique hollow morphology produced a better compression recovery of HCB than other solid carbon black, such as acetylene black. When the coupling agent was bonded to HCB, their conductive silicone rubber composites were featured by high stretching resilience, a fast compression recovery and excellent conductivity to satisfy the electromagnetic interference shielding requirements. Importantly, the rubber composites with coupling HCB had extremely low variations of mechanical property, conductivity and EMI shielding effectiveness after thermal accelerated aging tests. It is therefore revealed that the elasticity of HCB and its interfacial chemical coupling with rubber chains both play crucial roles in adjusting the elasticity of conductive rubber to sever long-term EMI protection.  相似文献   

12.
<正>Polypyrrole(PPy) shows a favorable application in the electromagnetic interference(EMI) shielding due to its good electrical conductivity and outstanding air stability.Conducting PPy films with high conductivity and good adhesion were successfully polymerized on the surface of insulating epoxy resin substrates using chemical polymerization.The factors affecting the properties of PPy films,such as the surface morphology,adhesion between PPy film and substrate,electrical conductivity,EMI shielding effectiveness(SE),were investigated.The adhesion was improved significantly through a three-step surface pretreatment of epoxy resin substrates including removing impurities,roughening,and surface modification with silane coupling agent.An enhancement in the conductivity of PPy films of about one order of magnitude was achieved by adding dopant in FeCl_3 solution.The higher the conductivity,the better the shielding effectiveness.Taking sodium p-toluenesulfonate doped PPy film as example,EMI SE was in the practically useful range of about 30 dB over a wide frequency range from 30 MHz to 1500 MHz.The PPy film samples were characterized by scanning electron microscopy (SEM),infrared spectra(IR),X-ray photoelectron spectroscopy(XPS) and the flange coaxial transmission device.The fourpoint probe method was used to measure conductivity of PPy films.  相似文献   

13.
In order to reduce the pollutants of environment and electromagnetic waves, environment friendly polymer foams with outstanding electromagnetic interference shielding are imminently required. In this paper, a kind of electromagnetic shielding, biodegradable nanocomposite foam was fabricated by blending poly (butylene succinate) (PBS) with carbon nanotubes (CNTs) followed by foaming with supercritical CO2. The crystallization temperature and melting temperature of PBS/CNTs nanocomposites with 4 wt % of CNTs increased remarkably by 6 °C and 3.1 °C compared with that of pure PBS and a double crystal melting peak of various PBS samples appeared in DSC curves. Increasing the CNT content from 0 to 4 wt % leads to an increase of approximately 3 orders of magnitude in storage modulus and nearly 9 orders of magnitude in enhancement of electrical properties. Furthermore, CNTs endowed PBS nanocomposite foam with adjustable electromagnetic interference (EMI) shielding property, giving a specific EMI shielding effectiveness of 28.5 dB cm3/g. This study provides a promising methodology for preparing biodegradable, lightweight PBS/CNTs foam with outstanding electromagnetic shielding properties.  相似文献   

14.
Electrically conducting Au‐multiwalled carbon nanotube/polyaniline (Au‐MWCNT/PANi) nanocomposites were synthesized by two different ways: (1) by direct mixing of MWCNT/PANi and Au nanoparticles (Au‐MWCNT/PANi‐1) and (2) by in situ polymerization of aniline in the presence of both MWCNTs and Au nanoparticles (Au‐MWCNT/PANi‐2). The higher electrical conductivity of Au‐MWCNT/PANi‐2 compared with the other samples (PANi, MWCNT/PANi, Au‐MWCNT/PANi‐1) is supported by the red shifts of the UV‐vis bands (polaron/bipolaron), the high value of the –NH+= stretch peak (Fourier transform infrared spectroscopy studies), the high % crystallinity (X‐ray diffraction analysis) and more uniform dispersion of the Au NPs in the material. The performance of the samples in electromagnetic interference (EMI) shielding and microwave absorption was studied in the X‐band (8–12 GHz). For all the samples, absorption was the dominant factor contributing toward the EMI shielding. Au‐MWCNT/PANi‐2 showed the best performance with a total shielding effectiveness of ?16 dB [averaged over the X‐band (GHz)] and a minimum reflection loss of ?56.5 dB. The higher dielectric properties resulting from the heterogeneities because of the presence of nanofillers and the high electrical conductivity lead to the increased EMI shielding and microwave absorption. The results show the significance of both Au nanoparticles and method of synthesis on the EMI shielding performance of MWCNT/PANi composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Flaky Ni/Ni-Cu-coated glass fiber/epoxy resin composite coatings were prepared using the glass fibers and flaky nickel powders as fillers and epoxy resin as binder. The conductivity and electromagnetic shielding effectiveness of the coatings are as follows: (1) the appropriate content of Ni-Cu-coated glass fibers is 6 wt % in the composite filler and the optimum ratio of the filler to epoxy resin is 4: 1; (2) electrical conductivity of the coating with a thickness of 300 μm has a minimum value of 0.72 Ω cm; (3) shielding effectiveness of the coatings is up to 50.21–55.43 dB in the frequency range of 0.3–1000 MHz. This offers a new idea to enhance the added value of the glass fibers and raise the level of electromagnetic radiation protection.  相似文献   

16.
通过共挤出包覆-热压法制备了具有隔离结构的聚丙烯(PP)/碳纳米管(CNTs)电磁屏蔽复合材料。 其中,CNTs随机分布于PP基体中形成导电相,该导电复合物作为包覆层包敷在纯PP颗粒表面,形成包覆复合粒子,经热压后形成隔离导电网络。 结果表明,所制备的隔离结构复合材料呈现良好的导电性能,可获得较低的导电逾渗值0.28%(体积分数);在CNTs质量分数为5.6%时,该复合材料电磁屏蔽性能达到25.6 dB,同时具有良好的力学性能。 本文结果表明,共挤出包覆-热压法制备隔离结构导电复合材料方法简单可控、绿色环保,对开发高性能电磁屏蔽复合材料具有重要指导意义。  相似文献   

17.
Electromagnetic interference (EMI) shielding materials of complex type of conductive polypyrrole (PPy) as an intrinsically conducting polymer and silver‐palladium (AgPd) metal compound coated on woven or non‐woven fabrics are synthesized. From dc conductivity and SEM photographs of PPy/fabric complexes, we discuss charge transport mechanism and the homogeneity of coating on the fabrics. The EMI shielding efficiency of PPy/fabric and AgPd/fabric complexes is in the range of 8 ~ 80 dB depending on the conductivity and the additional Ag vacuum evaporation. The highest EMI shielding efficiency of PPy/fabric complexes vacuum‐evaporated by Ag is ~80 dB, indicating potential materials for military uses. We propose that PPy/fabrics are excellent RF and microwave absorber because of the relatively high absorbance and low reflectance of the materials. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The present article deals with current trends in spinel based modified polymer composite materials for applications in the field of electromagnetic shielding. The interaction between the various spinel based materials and polymers is an emerging field of studies among various researchers. The thermal stability, electrical conductivity, the bonding between the metal ferrites and the polymer plays an important role in the interaction of electromagnetic radiation. These properties also effect the mechanism of the EM waves for the shielding applications. Considering these all properties, polyaniline appears to be an suitable polymer for electromagnetic shielding applications. Polyaniline composites not only reinforced the properties of spinel materials but also enhanced the dielectric properties of the composite material. When carbon based materials such as graphene, graphene oxide and CNT was added along with spinel material in polyaniline based composite, they accelerate the electrical properties and enhances the shielding applications. In this paper the various synthesis methods, fabrication methods of polyaniline, and the properties of polyaniline based composites have been discussed. In addition, the various salient features and futuristic challenges of polyaniline based composite materials for EMI shielding applications were attempted to make a well equipped material for radar absorption.  相似文献   

19.
Superhydrophobic conductive nanocomposite coatings are prepared for the first time from the simple mixture of a commercial aqueous silica sol and functionalized multiwalled carbon nanotubes (MWNTs) by air-spraying at ambient conditions followed by fluorosilane treatment. The relationship between MWNT content and the structure and properties of the nanocomposite coatings is investigated systematically. An ultra-low threshold (<5 vol.%) for superhydrophobicity is observed, which suggests that MWNTs are superior to any other spherical fillers for the construction of superhydrophobic nanocomposite coatings. When the content of nanotubes is below the threshold, the surface roughness mainly caused by the silica nanoparticles is not enough for creating superhydrophobic surfaces. Only above the threshold, the multiscale hierarchical structure is enough for both high water contact angles (>165°) and extremely low sliding angles (<2°). The conductivity is also percolation dominated, while the threshold for conductivity is much higher than that for superhydrophobicity, which can be ascribed to the encapsulated structure and the agglomeration of nanotubes in the composite coatings during air-spraying. Moreover, the aqueous silica sols hold merits of great film-forming capability at relatively low calcination temperatures, and being free of organic solvents.  相似文献   

20.
Carbon nanomaterials such as carbon nanotubes (CNTs), graphene and their hybrid have been studied extensively. Despite having excellent properties of CNTs and graphene have not yet been fully realized in the polymer composites. During fabrication agglomeration of CNTs and restacking of graphene is a serious concern that results in the degradation of properties of nanomaterials into the final composites. To improve the dispersion of CNTs and restacking graphene, in the present research work, we focused on the hybridization of graphene oxide and CNTs. Multiwalled carbon nanotubes (MWCNTs), functionalized carbon nanotubes (FCNTs), and graphene oxide-carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites were prepared separately by vacuum filtration followed by hot compression molding. Further, dynamic mechanical analysis (DMA), and electromagnetic interference (EMI) shielding properties of ABS composites reinforced carbon nanofillers were investigated. The dynamic mechanical properties of polymers strongly depend on the adhesion of fillers and polymer, entanglement density of polymer chains in the presence of carbon fillers. The dynamic mechanical characteristics such as storage, loss modulus, and damping factor of prepared composites were significantly affected by the incorporation of MWCNTs, FCNTs, and GCNTs. Maximum EMI shielding effectiveness of −49.6 dB was achieved for GCNT-ABS composites which were highest compared to MWCNTs-ABS composites (−38.6 dB) and FCNTs-ABS composites (−36.7 dB) in the Ku band (12.4–18 GHz). These results depict the great potential of GCNTs-ABS composites to be used in various applications of efficient heat dissipative EMI shielding materials for electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号