首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A set of Mo/Si periodic multilayers is studied by non-destructive analysis methods. The thickness of the Si layers is 5 nm while the thickness of the Mo layers changes from one multilayer to another, from 2 to 4 nm. This enables us to probe the effect of the transition between the amorphous and crystalline state of the Mo layers near the interfaces with Si on the optical performances of the multilayers. This transition results in the variation of the refractive index (density variation) of the Mo layers, as observed by X-ray reflectivity (XRR) at a wavelength of 0.154 nm. Combining X-ray emission spectroscopy (XES) and XRR, the parameters (composition, thickness and roughness) of the interfacial layers formed by the interaction between the Mo and Si layers are determined. However, these parameters do not evolve significantly as a function of the Mo thickness. It is observed by diffuse scattering at 1.33 nm that the lateral correlation length of the roughness strongly decreases when the Mo thickness goes from 2 to 3 nm. This is due to the development of Mo crystallites parallel to the multilayer surface.  相似文献   

2.
X-ray multilayer mirrors of period ranging from 9.6 to 1.7 nm, deposited using ion beam sputtering, have been examined using grazing incidence X-ray reflectivity (GIXRR) and grazing incidence X-ray diffraction. Detailed analysis of GIXRR data revealed that significant amount of re-sputtering of Si layer takes place while W deposition is underway. Re-sputtering is mainly due to bombardment of high-energy neutrals getting reflected from the W target. Due to re-sputtering interface of the multilayer becomes asymmetric. This puts a major hindrance in avoiding the intermixing and achieving sharp interfaces at shorter periods. Maximum thickness of Si which gets lost due to re-sputtering during deposition is ∼0.8 nm. The shortest period multilayer estimated, that could be deposited without intermixing, was 2.7 nm. These results are of significance for developing low period W/Si multilayers.  相似文献   

3.
Two groups of Mo/Si films were deposited on surface of Si(1 0 0) crystal. The first group of the samples was prepared by both ion beam assisted deposition (IBAD) and metal vapor vacuum arc (MEVVA) ion implantation technologies under temperatures from 200 to 400 °C. The deposited species of IBAD were Mo and Si, and different sputtering Ar ion densities were selected. The mixed Mo/Si films were implanted by Mo ion with energy of 94 keV, and fluence of Mo ion was 5 × 1016 ions/cm2. The second group of the samples was prepared only by IBAD under the same test temperature range. The Mo/Si samples were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), sheet resistance, nanohardness, and modulus of the Mo/Si films were also measured. For the Mo/Si films implanted with Mo ion, XRD results indicate that phase of the Mo/Si films prepared at 400 and 300 °C was pure MoSi2. Sheet resistance of the Mo/Si films implanted with Mo ion was less than that of the Mo/Si films prepared without ion implantation. Nanohardness and modulus of the Mo/Si films were obviously affected by test parameters.  相似文献   

4.
One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ∼2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.  相似文献   

5.
The surface and interface roughness of Mo/B4C multilayer mirrors for 7-nm soft X-ray polarizer with variable layer pairs (N = 50, 70, 90 and 110), fabricated by DC sputtering technique is investigated by atomic force microscopy and X-ray scattering and reflecting. The experimental results present that the surface and interface roughness of Mo/B4C multilayer mirrors increase layer by layer from its substrate as its Mo layer thickness greater than 2 nm, and the roughness grown tendency could be characterized by a quadratic function.  相似文献   

6.
Cr/C is a promising material combination for multilayer mirror in the “near water window region” (4.4-6.7 nm). In the present paper, the effect of defects on the reflectivity of Cr/C soft X-ray multilayer mirror deposited by magnetron sputtering was studied. Formation of thin interlayer due to the interdiffusion, rough interface due to the non-sharp layer and contamination of O happened during the deposition process were found by a method combined by XPS, soft X-ray reflectivity at 4.48 nm and grazing incidence hard X-ray reflectivity at 0.154 nm. The XPS results show that both interlayers (Cr-on-C and C-on-Cr) are mixture composed of C sp2, C sp3, CO, CO, CrCr and CrO bondings. No chromium carbide was found at the interlayer probably due to the blocking of oxides’ formation. Through the analysis of X-ray reflectivity, we obtained the multilayer structure parameters (thickness and roughness) and optical constants of each layer at 4.48 nm. Based on those results, a further calculation was carried out. The result shows that the formation of the thin interlayer contributes little to the decrease of the reflectivity, the rough interface decreases the reflectivity most and the contaminant (O) not only decreases the reflectivity but also shifts the position of the peak.  相似文献   

7.
A methodology combining non-destructive X-ray techniques is proposed to study the interfacial zones of periodic multilayers. The used X-ray techniques are X-ray emission spectroscopy induced by electrons and X-ray reflectivity in the hard and soft X-ray ranges. The first technique evidences the presence of compounds at the interfaces and gives an estimation of the thickness of the interfacial zone. These informations are used to constrain the fit of the X-ray reflectivity curves that enables to determine the thickness and roughness of the various layers of the stacks. The results are validated in the soft X-ray range where the reflectivity curves are very sensitive to the chemical state of the elements present in the stack. The methodology is applied to characterize Mo/Si (1-4 nm/2 nm) and B4C/Mo/Si (1 nm/2 nm/2 nm) multilayers. It is shown that the two interfacial zones of the Mo/Si multilayers are composed of the silicides MoSi2 and Mo5Si3. It is found that the interface thickness is about to be 0.4-0.8 nm depending on the samples. The molybdenum silicides are also evidenced at the interfaces of the B4C/Mo/Si multilayers. However, their interface thickness is 0.2 nm thinner than that of the same stack without the B4C layers, these layers being at the Mo-on-Si side or at the Si-on-Mo side. Thus, the B4C layers do not stop but only reduce the interdiffusion between the Mo and Si layers.  相似文献   

8.
祝文秀  金春水  匡尚奇  喻波 《光学学报》2012,32(10):1031002-294
极紫外光刻是实现22nm技术节点的候选技术。极紫外光刻使用的是波长为13.5nm的极紫外光,但在160~240nm波段,极紫外光刻中的激光等离子体光源光谱强度、光刻胶敏感度以及多层膜的反射率均比较高,光刻胶在此波段的曝光会降低光刻系统的光刻质量。从理论和实验两方面验证了在传统Mo/Si多层膜上镀制SiC单层膜可对极紫外光刻中的带外波段进行有效抑制。通过使用X射线衍射仪、椭偏仪以及真空紫外(VUV)分光光度计来确定薄膜厚度、薄膜的光学常数以及多层膜的反射率,设计并制备了[Mo/Si]40SiC多层膜。结果表明,在极紫外波段的反射率减少5%的前提下,带外波段的反射率减少到原来的1/5。  相似文献   

9.
波长30.4 nm的He-II谱线是极紫外天文观测中最重要的谱线之一,空间极紫外太阳观测光学系统需要采用多层膜作为反射元件。为此研究了SiC/Mg、B4C/Mg、C/Mg、C/Al、Mo/Si、B4C/Si、SiC/Si、C/Si、Sc/Si等材料组合的多层膜在该波长处的反射性能。基于反射率最大与多层膜带宽最小的设计优化原则,选取了SiC/Mg作为膜系材料。采用直流磁控溅射技术制备了SiC/Mg多层膜,用X射线衍射仪测量了多层膜的周期厚度,用国家同步辐射计量站的反射率计测量了多层膜的反射率,在入射角12°时,实测30.4 nm处的反射率为38.0%。  相似文献   

10.
ZrC/ZrN and ZrC/TiN multilayers were grown on (1 0 0) Si substrates at 300 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser. X-ray diffraction investigations showed that films were crystalline, the strain and grain size depending on the nature and pressure of the gas used during deposition. The elemental composition, analyzed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), showed that films contained a low level of oxygen contamination. Simulations of the X-ray reflectivity (XRR) curves acquired from films indicated a smooth surface morphology, with roughness below 1 nm (rms) and densities very close to bulk values.Nanoindentation results showed that the ZrC/ZrN and ZrC/TiN multilayer samples exhibited hardness values between 30 and 33 GPa, slightly higher than the values of 28-30 GPa measured for pure ZrC, TiN and ZrN films.  相似文献   

11.
Uranium dioxide films were deposited on Si (1 1 1) substrates by dc magnetron sputtering method at different sputtering parameters. The structure, morphology and chemical state of the films were studied by field emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy. Influences of film thickness on the microstructure and optical properties were investigated. Experimental results show that the film crystallites are preferentially oriented with the (1 1 1) planes. The average grain size increases with increasing film thickness. AFM images show that the root mean square roughness of the films is between 1.2 nm and 2.1 nm. Optical constants (refractive index, extinction coefficient) of the films in the wavelength range of 350-1000 nm are obtained by ellipsometric spectroscopy. The result shows that the refractive index decreases with the increasing film thickness, while extinction coefficient increases with the film thickness.  相似文献   

12.
高反射率Mo/B4C多层膜设计及制备   总被引:3,自引:2,他引:1       下载免费PDF全文
 运用遗传算法优化设计了Mo/B4C多层膜结构。入射光入射角度取10°时,设计的理想多层膜膜对数为150,周期为3.59 nm,Gamma值(Mo膜厚与周期的比值)为0.41,峰值反射率为33.29%。采用恒功率模式直流磁控溅射方法制作Mo/B4C多层膜。通过在Mo/B4C多层膜与基底之间增加15 nm厚的Cr粘附层,提高多层膜与基底的粘附力。另外,还采用调整多层膜Gamma值的方法减小其内应力,调整后多层膜结构周期为3.59 nm, Mo膜厚1.97 nm, B4C膜厚1.62 nm,峰值反射率26.34%。制备了膜对数为150的Mo/B4C膜并测量了其反射率,在波长7.03 nm处,Mo/B4C多层膜的近正入射反射率为21.0%。最后对测量结果进行了拟合,拟合得到Mo/B4C多层膜的周期为3.60 nm,Gamma值0.60,界面粗糙度为0.30 nm。  相似文献   

13.
A series of Mo/Si multilayers with the same periodic length and different periodic number were prepared by magnetron sputtering, whose top layers were respectively Mo layer and Si layer. Periodic length and interface roughness of Mo/Si multilayers were determined by small angle X-ray diffraction (SAXRD).Surface roughness change curve of Mo/Si multilayer with increasing layer number was studied by atomic force microscope (AFM). Soft X-ray reflectivity of Mo/Si multilayers was measured in National Synchrotron Radiation Laboratory (NSRL). Theoretical and experimental results show that the soft X-ray reflectivity of Mo/Si multilayer is mainly determined by periodic number and interface roughness, surface roughness has little effect on reflectivity.  相似文献   

14.
Pentacene films on Si(1 0 0)-(2 × 1) surface at 300 K were investigated using near edge X-ray absorption fine structure (NEXAFS) at the carbon K-edge. NEXAFS spectra show that pentacene molecules are chemisorbed on the Si(1 0 0)-(2 × 1) surface for monolayer with flat-laying and predominantly physisorbed on the Si(1 0 0)-(2 × 1) surface for multilayer films with an upright molecular orientation. Absorption angle of pentacene molecules were measured through π transition. The angles between the double bond and the silicon surface were 35-55°, 65° and 76° at monolayer, 24 and 48 nm pentacene deposited on the Si(1 0 0) surface, respectively. We observed that the intermediate flat-laying phase is favored for monolayer coverage, while the films of molecules standing perpendicular to the Si(1 0 0) surface are favored for multilayer coverage.  相似文献   

15.
S. Pal 《Applied Surface Science》2007,253(6):3317-3325
Tungsten oxide (WO3) thin films were deposited by a modified hot filament chemical vapor deposition (HFCVD) technique using Si (1 0 0) substrates. The substrate temperature was varied from room temperature to 430 °C at an interval of 100 °C. The influence of the substrate temperature on the structural and optical properties of the WO3 films was studied. X-ray diffraction and Raman spectra show that as substrate temperature increases the film tends to crystallize from the amorphous state and the surface roughness decreases sharply after 230 °C as confirmed from AFM image analysis. Also from the X-ray analysis it is evident that the substrate orientation plays a key role in growth. There is a sharp peak for samples on Si substrate due to texturing. The film thickness also decreases as substrate temperature increases. UV-vis spectra show that as substrate temperature increases the film property changes from metallic to insulating behavior due to changing stoichiometry, which was confirmed by XPS analysis.  相似文献   

16.
为提高Mo/Si多层膜的稳定性与使用寿命,通过分析多层膜驻波电场的分布,对表面保护层及多层膜最上层材料的厚度进行优化设计,使优化后的反射率最高.计算表明,一定厚度的表面保护层总对应一个最优的最上层材料厚度.在13.36 nm波长,膜对数为50的Mo/Si多层膜10度入射的理论反射率为74.47%;当添加厚度为2.3 nm的Ru作为表面保护层,对应多层膜最上层Si的优化厚度为3.93 nm,其理论反射率为75.20%.设计结果表明,通过优化设计表面保护层,可以提高多层膜稳定性,改善多层膜性能.  相似文献   

17.
5-nm-thick amorphous Ni-Ti films deposited on Si by magnetron sputtering, annealed at various temperatures in high vacuum, have been studied as diffusion barriers for Cu interconnection using X-ray diffraction, atomic force microscopy and four-probe methods. Although no Cu silicide peaks are found from X-ray diffraction patterns of the samples annealed up to 750 °C, it is found that the sheet resistance of Cu/Ni-Ti/Si decreases with the increase of annealing temperature and then slightly increases when the annealing temperature is higher than 700 °C. Root mean square roughness of Cu/Ni-Ti/Si increases with the increase of annealing temperature and many island-like grains present on the surface of the 750 °C annealed sample, which is ascribed to dewetting and agglomeration.  相似文献   

18.
Liu Z  Li X  Ma YY  Chen B  Cao JL 《光谱学与光谱分析》2011,31(4):1138-1141
为了满足类氖-锗X射线激光研究的需要,设计制备了23.4 nm软X射线多层膜反射镜.依据多层膜选材原则并考虑材料的物理化学特性选择新的材料Ti与Si组成材料对.设计优化材料多层膜的周期厚度(d),材料比例(Γ),周期数(N),计算出Ti/Si反射率曲线.通过实验优化各种镀膜工艺参数,制备出了23.4 nm的Ti/Si多...  相似文献   

19.
The microstructure and magnetic properties of FePt films grown on Cr and CrW underlayers were investigated. The FePt films that deposited on Cr underlayer show (2 0 0) orientation and low coercivity because of the diffusion between FePt and Cr underlayer. The misfit between FePt magnetic layer and underlayer increases by small addition of W element in Cr underlayer or using a thin Mo intermediate layer, which is favorable for the formation of (0 0 1) orientation and the transformation of FePt from fcc to fct phase. A good FePt (0 0 1) texture was obtained in the films with Cr85W15 underlayer with substrate temperature of 400 °C. The FePt films deposited on Mo/Cr underlayer exhibit larger coercivity than that of the films grown on Pt/Cr85W15 because 5 nm Mo intermediate layer depressed the diffusion of Cr into magnetic layer.  相似文献   

20.
基于多层膜准单色覆盖50~1500 eV能谱的多能点发射光谱测量系统可获得聚龙一号装置Z-pinch等离子体X射线源的能谱结构和总能量等信息。考虑装置的条件,在13 nm处的多层膜需要工作在掠入射角60。常规的Mo/Si多层膜尽管反射率最高,但其带宽较大,不能满足多层膜准单色的要求。因此提出将Mo和C共同作为多层膜的吸收层材料与Si组成Si/Mo/C多层膜,可使反射率降低较小而带宽明显减小。采用磁控溅射方法制备了Si/Mo/C多层膜,其掠入射X射线反射测量表面多层膜的结构清晰完整,同步辐射工作条件下反射率测量,得到Si/Mo/C多层膜在13 nm处和掠入射角60时的反射率为56.5%,带宽为0.49 nm(3.7 eV)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号