首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work describes the field emission characteristics of nanoscale magnetic nanomaterial encapsulated multi-walled carbon nanotubes (MWNTs) fabricated over flexible graphitized carbon cloth. Ni/MWNTs, NiFe/MWNTs and NiFeCo/MWNTs have been synthesized by catalytic chemical vapor decomposition of methane over Mischmetal (Mm)-based AB3 (MmNi3, MmFe1.5Ni1.5 and MmFeCoNi) alloy hydride catalysts. Metal-encapsulated MWNTs exhibited superior field emission performance than pure MWNT-based field emitters over the same substrate. The results indicate that a Ni-filled MWNT field emitter is a promising material for practical field emission application with a lowest turn-on field of 0.6 V/μm and a high emission current density of 0.3 mA/cm2 at 0.9 V/μm.  相似文献   

2.
Using low-pressure chemical vapour deposition (LPCVD), multi-walled carbon nanotubes (MWNTs) are grown on nanocrystalline Fe70Pt30 film. The Fe70Pt30 nanocrystalline film is deposited by vapour condensation technique. The size of the nanoparticles varies from 5–10 nm, as inferred from SEM micrographs of Fe70Pt30 film. SEM and TEM observations of as-grown CNTs film reveal that these are multi-walled and their diameter varies from 30–80 nm and length is of the order of several micrometers respectively. There is a structural change from ordinary geometry of CNTs to bamboo shaped as suggested by TEM image. Raman spectra shows sharp G and D bands with a higher intensity of G band showing the presence of graphitic nature of the nanotubes. An experimental study of the temperature dependence of electrical conductivity of MWNTs film is done over a wide temperature range from (293–4 K). The measured data gives a good fit to variable-range hopping (VRH) and the results are interpreted using Mott's (VRH) model. The conduction mechanism of the MWNTs film shows a crossover from the exp[ -(To/T)1/4] law in the temperature range (293–110 K) to exp[ -(Tm/T)1/3] in the low temperature range (110–4 K). This behaviour is attributed to temperature-induced transition from three-dimension (3D) to two-dimension (2D) VRH. Various Mott's parameters like characteristic temperature (Tm), density of states at Fermi level N(EF), localization length (ξ), hopping distance (R), hopping energy (W) have also been calculated using above-mentioned model.  相似文献   

3.
The partial coverage of manganese oxide (MnO2) particles was achieved on the surfaces of multi-walled carbon nanotubes (MWCNTs) through a facile hydrothermal process. These particles were demonstrated to be alpha-manganese dioxide (α-MnO2) nanocrystallites, and exhibited the appearance of the whisker-shaped crystals with the length of 80–100 nm. In such a configuration, the uncovered CNTs in the nanocomposite acted as a good conductive pathway and the whisker-shaped MnO2 nanocrystallites efficiently increased the contact of the electrolyte with the active materials. Thus, the highest specific capacitance of 550 F g−1 was achieved using the resulting nanocomposites as the supercapacitor electrode. In addition, the enhancement of the capacity retention was observed, with the nanocomposite losing only 10% of the maximum capacity after 1,500 cycles.  相似文献   

4.
Double-walled carbon nanotubes (DWCNTs) and two kinds of vertically aligned multi-walled carbon nanotubes were employed as raw materials to fabricate transparent conductive films (TCFs). DWCNTs constructed the densest conductive network at the same transmittance, and the corresponding TCFs showed the best performance (320 Ω/□ at 75.0% T). The ratio of dc conductivity to optical conductivity (σ dc/σ op) of the as-dispersed DWCNTs was 3.88. The as-obtained TCFs were dipped in HNO3 solution to improve their performances. Attributed to the removal of sodium dodecyl sulfate molecules, reduction of film thickness, and doping with electron acceptors (such as oxygen), the surface resistance after HNO3 treatment decreased. The σ dc/σ op ratio of the DWCNTs was further increased to 5.24.  相似文献   

5.
The performance of Co catalysts supported on MgO at different Co loading (10%-75%) for the formation of carbon nanotubes through acetylene decomposition at 600 °C with H2/C2H2 mixture for 1 h is investigated. The yield of MWNTs increases with an increase in Co loading (up to 50%). Starting from 1 g of catalyst precursor, about 8 g of MWNTs was obtained. The XRD patterns of catalyst precursor indicate the presence of cobalt in oxidic phase that eventually transformed into the catalytically active Co nanoparticles (12-18 nm) under the influence of acetylene and was responsible for the growth of coiled-like multi-walled CNTs as revealed by SEM and HRTEM images. It is suggested that bending in coil shaped MWNTs has the potential for functionalization for its biomedical applications.  相似文献   

6.
Raman light scattering and IR absorption spectra of samples containing multilayer carbon nanotubes in different stages of purification by the selective oxidation technique have been investigated. It was found that the Raman spectra of carbon nanotubes exhibit softening of the mode at 1582 cm−1 corresponding to E 2g vibrations of graphite hexagons and a line at 120 cm−1 due to the radial vibrations of nanotubes. In IR absorption spectra measured in the region of 0.07–0.3 eV, several sets of lines with a spacing of 15 meV (120 cm−1) between lines of each group have been detected. We suggest that each group corresponds to electron transitions generating electron-hole pairs in semiconducting nanotubes and contains a phononless 00-line and its phonon replicas with spacing between them equal to the “breathing” mode energy of 120 cm−1. Measurements of electric conductivity at a frequency of 9300 MHz indicate that, in addition to semiconducting nanotubes, the samples contain nanotubes with properties of a highly disordered semimetal. Zh. éksp. Teor. Fiz. 113, 1883–1891 (May 1998)  相似文献   

7.
A simple spray pyrolysis setup is used to grow multi-walled carbon nanotubes (MWCNTs), from a ferrocene solution in benzene as precursor. The effects of process variables such as growth temperature, position of the aerosol generator and position in the reactor where the sample was formed were investigated. These variables have a strong influence on the graphitization degree, homogeneity, diameter and alignment of the nanotubes, as observed by TEM, SEM, XRD and Raman spectroscopy. Vertically aligned MWCNT arrays with high density were obtained in large areas (10 × 10 mm2), with high yield (2.1 mg cm−2) and at a growth rate at 1.43 μm min−1, by a suitable choice of the experimental conditions.  相似文献   

8.
Magnetite nanocrystals are deposited on carbon nanotubes by a reflux method in diethylene glycol. The morphological characterization proves that magnetite nanocrystals are decorated on the external surfaces of carbon nanotubes. The crystal size of magnetite nanocrystals can be readily tuned by adjusting the content of sodium acetate, but the content of sodium acetate has little effect on the amount of magnetite. The magnetite/carbon nanotubes composites exhibit an initial capacity as high as 840 mAh g−1 and an excellent cycling performance for lithium storage. The reversible capacity, as high as 390 mAh g−1, can be maintained after 75 charge/discharge cycles. The research has potential implications for the application of magnetite/carbon nanotubes composites as anode materials of lithium ion batteries.  相似文献   

9.
The effects of gamma-irradiation on the modification of the surface and structure of multi-walled carbon nanotubes were studied. Gamma-irradiation affected the graphitization properties of functional groups, and decreased the diameter of multi-walled carbon nanotubes. The irradiated multi-walled carbon nanotubes with the absorbed dose of 100 kGy exhibited a larger specific surface area and microporous volume as compared with the other samples. The Raman spectroscopy and X-ray photoelectron spectroscopy showed that the interaction between the gamma-irradiation and the multi-walled carbon nanotubes with the absorbed dose of 150 kGy destroyed the nanostructure of carbons, leading to the formation of diamond-like structures and carbon oxides. In addition, gamma-irradiation with the absorbed dose of 100 kGy improved multi-walled carbon nanotubes graphitization and surface properties while at higher absorbed dose (150 kGy), it induced damaged structures (sp3 bonds and oxygen compositions).  相似文献   

10.
This paper describes the electrochemical investigation of two multi-walled carbon nanotube-based electrodes using potassium ferricyanide as a benchmark redox system. Carbon nanotubes were fabricated by chemical vapor deposition on silicon wafer with camphor and ferrocene as precursors. Vertically-aligned as well as islands of horizontally-randomly-oriented carbon nanotubes were obtained by varying the growth parameters. Cyclic voltammetry was the employed method for this electrochemical study. Vertical nanotubes showed a slightly higher kinetic. Regarding the sensing parameters we found a sensitivity for vertical nanotubes almost equal to the sensitivity obtained with horizontally/randomly oriented nanotubes (71.5 ± 0.3 μA/(mM cm2) and 62.8 ± 0.3 μA/(mM cm2), respectively). In addition, values of detection limit are of the same order of magnitude. Although tip contribution to electron emission has been shown to be greatly larger than the lateral contribution on single carbon nanotubes per unit area, the new findings reported in this paper demonstrate that the global effects of nanotube surface on potassium ferricyanide electrochemistry are comparable for these two types of nanostructured surfaces.  相似文献   

11.
This article reports a method for surface modification of multi-walled carbon nanotubes (MWNTs) using a low-pressure capacitively coupled RF glow-discharge. Ar/C2H6 and Ar/C2H6/O2 gaseous mixtures were used to produce non-polar (np-) and polar (p-) coatings, respectively, onto MWNTs. After 5 min of plasma treatment at 20 W and 20 torr, strongly hydrophobic and non-electrically conductive np-MWNTs were produced. The p-MWNTs were strongly hydrophilic and showed no measurable hydrophobic recovery 2 weeks after treatment. Aqueous suspensions of p-MWNTs remained stable and free of agglomerates after being boiled. The ζ-potential of p-MWNT nanofluids was −40.3 mV, indicating a highly stable dispersion.  相似文献   

12.
Heating of multi-walled carbon nanotubes is often required to obtain clean patterns in the field electron emission microscope (FEEM). A transmission electron micrograph study of morphological changes in the cap structure of multi-walled carbon nanotubes due to heating in vacuum is presented. The lack of significant structural change in the cap structure when specimens were heated to 1925 K for 2.5 h determines an upper bound for the diffusivity of multi-walled carbon nanotube surface atoms, of the order of 10−16 cm2/s at 1925 K.  相似文献   

13.
This article reports the thermal conductivity modeling of nanofluids containing decorated multi-walled carbon nanotubes with TiO2 nanoparticles. TiO2 nanoparticles and decorated multi-walled carbon nanotubes are synthesized with different amounts of TiO2 nanoparticles. The experimental results show that the measured thermal conductivities of TiO2 nanofluids and multi-walled carbon nanotube nanofluids are higher than the predicted values by theoretical models. The comparison results of multi-walled carbon nanotube nanofluids and multi-walled carbon nanotube–TiO2 nanofluids reveal that the predicted values by the Xue model are closer to the measured values. In addition, the results show that the thermal conductivity of nanofluids containing multi-walled carbon nanotube–TiO2 increases with respect to TiO2 content of hybrid.  相似文献   

14.
Carbon nanotubes can be obtained from a multitude of molecular precursors in chemical vapor deposition (CVD) processes. Here we demonstrate that the use of C60 as the carbon feedstock gas in an iron-catalyzed thermal CVD experiment leads to the formation of films of multi-walled carbon nanotubes. The critical role of the diameter of the catalyst particles in determining the efficiency of nanotube growth is clearly demonstrated. Electron microscopy and Raman spectroscopy were employed for the characterisation of the nanotube material. The structural properties of the individual nanotubes show distinctive differences to acetylene-grown multi-walled nanotubes. PACS 81.07.De; 81.10.Bk  相似文献   

15.
Single-walled carbon nanotubes and multi-walled carbon nanotubes/ZrO2 nanocomposites were obtained by isothermal hydrolyzing and chemical precipitation method for both the carbon nanotubes. The coating was taken place by dispersion of both the carbon nanotubes in ZrOCl2·8H2O aqueous solution. However, a highly conformal and uniform monoclinic zirconia coating was deposited on multi-walled carbon nanotubes rather than single-walled carbon nanotubes by this new and simple method. Also, it has been observed that the thickness of the individual carbon nanotube after zirconia coating was increased by isothermal hydrolyzing process rather than traditional chemical precipitation method and it has been confirmed by high-resolution transmission electron microscopy study.  相似文献   

16.
Electrophoretic deposition (EPD) has been used to combine multi-walled carbon nanotubes of diameter in the range 20–30 nm and commercially available TiO2 nanoparticles (23 nm particle size) in composite films. Laminate coatings with up to four layers were produced by sequential EPD, while composite coatings were obtained by electrophoretic co-deposition of carbon nanotubes and TiO2 nanoparticles, respectively. Scanning electron microscopy was used to characterize the resultant microstructures. The mechanism of EPD of carbon nanotube/TiO2 nanoparticle composites is discussed.  相似文献   

17.
The direct electrochemistry of morphine on modified multiwall carbon nanotubes using carbon ionic liquid (i.e., 1-butyl-3-methylimidazolium hexafluoro phosphate, ([C4mim]–[PF6])) was studied. It was found that the electrode showed sensitive voltammetric response to morphine. The experimental results suggested that the modified electrode promoted electron transfer reaction for the oxidation of morphine. The electron transfer coefficient and charge transfer resistant (R ct) of morphine at the modified electrode were calculated. Under the optimized conditions at pH 8.0, the peak current was linear to morphine concentrations over the concentration range of 0.45–450 μmol L−1, using differential pulse voltammetry. The detection limit was 0.14 μmol L−1. The proposed method was successfully applied to the determination of morphine in both ampoules and urine samples.  相似文献   

18.
The manganese oxide/multi-walled carbon nanotube (MnO2/MWNT) composite and the manganese oxide/acetylene black (MnO2/AB) composite were prepared by translating potassium permanganate into MnO2 which formed the above composite with residual carbon material using the redox deposition method and carbon as a reducer. The products were characterized by X-ray diffraction, Fourier transform infrared, and scanning electron microscope. Electrochemical properties of both the MnO2/MWNT and MnO2/AB electrodes were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the MnO2/MWNT electrode has better electrochemical capacitance performance than the MnO2/AB electrode. The charge–discharge test showed the specific capacitance of 182.3 F·g−1 for the MnO2/MWNT electrode, and the specific capacitance of 127.2 F·g−1 for the MnO2/AB electrode had obtained, within potential range of 0–1 V at a charge/discharge current density of 200 mA·g−1 in 0.5 mol·L−1 potassium sulfate electrolyte solution in the first cycle. The specific capacitance of both the MnO2/MWNT and MnO2/AB electrodes were 141.2 F·g−1 and 78.5 F·g−1 after 1,200 cycles, respectively. The MnO2/MWNT electrode has better cycling performance. The effect of different morphologies was investigated for both MnO2/MWNT and MnO2/AB composites.  相似文献   

19.
In this article, we report on the use of a pulsed KrF-laser (248 nm, 20 ns) for the synthesis of single wall carbon nanotubes (SWCNTs) from the ablation of a graphite target loaded with Co/Ni catalyst, under various growth conditions. By varying the Co/Ni catalyst load of the graphite target, from 0 to 2.4 at.%, the laser synthesized SWCNTs, under a furnace temperature (T f) of 1,100 °C, were found to be decorated by C60 buckyballs, of which the density decreases as the catalyst content is increased. The effect of the catalyst content of the laser-ablated graphite target on the produced carbon nanostructures (C60 vs. SWCNTs) was systematically investigated by means of various characterization techniques, including Raman spectroscopy, thermogravimetry, and SEM/HR-TEM microscopies. A [Co/Ni] ≥ 1.2 at.% was identified as the optimal concentration for the production of SWCNTs without any detectable presence of C60 buckyballs. Thus, under the optimal growth conditions (i.e., [Co/Ni] = 1.2 at.% and T f = 1,100 °C), the produced SWCNTs were found to be characterized by a very narrow diameter distribution (centered on 1.2 nm) with lengths in excess of 10 μm. By increasing T f from 900 to 1,150 °C, the diameter of the SWCNTs can be varied from ~0.9 to ~1.3 nm. This nanotube diameter variation was evidenced by Raman and UV–Vis absorption measurements, and its effect on the photoluminescence of the SWCNTs is presented and discussed.  相似文献   

20.
In the work, short multi-walled carbon nanotubes (S-CNTs) were synthesized by chopping conventional μm-long multi-walled carbon nanotubes (L-CNTs) under ultrasonication in H2SO4/HNO3 mixed acids. A comparative electrochemical investigation performed in 6 M KOH solution demonstrated that a specific capacitance (SC) of ca. 14.6 μF cm−2 was delivered by the S-CNTs with the specific surface area (SSA) of 207 m2 g−1, much larger than that of ca. 10.1 μF cm−2 for the L-CNTs with the SSA of 223 m2 g−1, the reason for which was that S-CNTs with two open ends, due to good ion penetrability, provided more entrances for electrolyte ions to access the inner surface easily through their shorter inner pathway so as to enhance their SSA utilization and geometric SC. The surface structure disruption of S-CNTs, owing to ultrasonication and oxidation during chopping process, deteriorated their electronic conductivity and resulted in an inferior power property in contrast to L-CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号