首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The reaction between SiCl4 and O2 at 1 atm between 25 and 1200°C has been followed by mass spectrometry. Below 600°C no reaction with O2 is noted. Above 600°C the reaction proceeds in two steps. Between 800 and 1000°C the 28Si/32O2 peak height ratio is constant with no evolution of Cl2. It is suggested that silicon oxychlorides are being formed in this temperature regime. Above 1000°C the reaction between SiCl4 and O2 intensifies with concomitant production of Cl2. It is suggested that above 1000°C the reaction SiCl4 + O2 → SiO2 + Cl2 becomes important.

At low temperatures (<800°C) adsorbed H2O and OH groups from the surface of the fused silica tube react with SiCl4 to form HCl. The importance of this reaction decreases with increasing temperature. The increased production of HCl above 1000°C is ascribed to H2O and H2 diffusing from the tube.  相似文献   


2.
One-dimensional Co(dien)2(VO3)3·(H2O) was prepared from the hydrothermal reaction of NH4VO3, Co2O3, diethylenetriamine (dien) and H2O at 130 °C. The compound crystallizes in the monoclinic system, space group P21/c with a=16.1581(6) Å, b=8.7006(3) Å, c=13.9893(4) Å, β=103.1483(11)°, V=1915.13(11) Å3, Z=4, and R1=0.0268 for 3060 observed reflections. Single crystal X-ray diffraction revealed that the structure is composed of infinite one-dimensional chains formed by corner-sharing VO4 tetrahedra with Co(dien)3+ complex cations and crystallization water molecules occupying the interchain positions, which are held together to a three-dimensional network via extensive hydrogen-bonding interactions. The compound, with a new zig-zag conformation of metavanadate chains, is the first example of vanadium oxides incorporating trivalent transition metal coordination groups. Other characterizations by elemental analysis, IR and thermal analysis are also described.  相似文献   

3.
The stabilities of the hydrated uranyl phosphates (UO2)3(PO4)2 · 4 H2O, UO2HPO4 · 4 H2O, and UO2(H2PO4) · 3 H2O have been reinvestigated. The compounds identified by thermal analysis have been prepared isothermally and characterized by their strongest X-ray reflections. During dehydration, oxygen was not evolved and the crystalline compounds (UO2)3(PO4)2, (UO2)2P2O7, UO2(PO3)2, and probably (UO2)3P4O)13 were found.

At still higher temperatures, the uranyl phosphates are reduced. The decomposition products lose phosphorus oxide above 1300–1400°C. The present results are summarized in a tentative pseudo-binary phase diagram UOx(x = 3 to 2)—UO2(PO3)2.  相似文献   


4.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

5.
With the help of the quasi isothermal-quasi isobaric technique, completed with DTA and thermomicroscopic examinations, several new observations have been made regarding the dehydration process of MgSO4 · 7 H2O. It was found that under given conditions the material, first at 50°C and then at 95°C, melts in an incongruous way. In the course of the latter transformation, a ternary system consisting of solid MgSO4 · 3 H2O, a solution phase saturated with respect to the trihydrate, and a water vapour phase, is formed. The saturated solution reaches its boiling point at 105°C. Without any temperature change, the system loses four moles of water and solid MgSO4 · 3 H2O remains. This decomposes at 115°C and a mixture consisting of MgSO4 · H2O and MgSO4 · 2 H2O forms, the proportion of which depends on the experimental conditions. At 150°C, the latter compound loses one mole of water. The MgSO4 · H2O maintains constant weight up to 310°C, above which temperature the remaining water of crystallization is removed.  相似文献   

6.
Three hydrated uranyl arsenates, (UO2)3(AsO4)2 · 11 H2O, UO2HAsO4 · 4 H2O, and UO2(H2AsO4)2 · 1 H2O, have been prepared. The dehydration of these compounds has been studied by thermal analysis. Three crystalline anhydrous uranyl arsenates, (UO2)3(AsO4)2, (UO2(AsO3)2, have been found. These show melting phenomena and lose arsenic oxide vapour at high temperatures to result, finally, in U3O8 at 1500°C in air. The anhydrous compounds have been prepared under isothermal conditions and the strongest X-ray reflections are given. A tentative phase diagram in the composition range UO3 to As2O5 has been constructed.  相似文献   

7.
Liao W  Shang Q  Yu G  Li D 《Talanta》2002,57(6):6184-1092
Phase behavior of the extraction system, Cyanex 923–heptane/H2SO4–H2O has been studied. The third phase appeared at different aqueous H2SO4 concentration with varying initial Cyanex 923 concentration and temperature affects its appearance. Almost all of H2SO4 and H2O are extracted into the middle phase. The H2SO4 concentration in the third phase increases with the increasing aqueous acid concentration (CH2SO4,b) while the water content first increases and then reaches a constant value at CH2SO4,b=11.3 mol l−1. In the region of CH2SO4,b higher than 5.2 mol l−1, the composition of the middle phase is only related to the equilibrium concentration of H2SO4 in the bottom phase. H2SO4 and H2O are transferred into the middle phase mainly by their coordination with Cyanex 923 when CH2SO4,b is less than 11.3 mol l−1. When CH2SO4,b is higher than 11.3 mol l−1, excess H2SO4 is solubilized into the polar layer of the aggregates. In the region considered, the extracted complex changes from C923 · H2SO4 to C923 · H2SO4 · H2O and then to C923 · (H2SO4)2 · H2O.  相似文献   

8.
Vanadium oxides are one of the most important heterogeneous catalysts that are widely used to oxidize hydrocarbon molecules into value-added chemicals. In order to reveal the mechanisms and the nature of active sites, numerous experimental and theoretical studies have been reported on the reactivities of gas-phase vanadium oxide clusters toward small molecules. However, there has been very limited research on the chemical reactivity changes associated with the oxygen contents of vanadium oxides and the carbon chain lengths of alkanes. In this work, the reactions of vanadium oxide ions VO1−4+ with alkanes (n-CmH2m+2, m = 3, 5, 7) were systematically investigated by time-of-flight mass spectrometry and the reactions of VO1−3+ with pentane were further studied by density functional theory calculations. Experimental results show that in the reactions of VO+, VO3+, and VO4+ with n-C5H12, in addition to the major adsorption processes, the activation of the C―H and C―C bonds of n-C5H12 was observed. The activation of both the bonds was observed experimentally during the reaction of VO2+ with n-C5H12 with large branching ratios. Among the vanadium oxide cations studied, VO2+ shows the strongest oxidizability and the generation of lighter alkanes and alkenes dominates the reactions; VO+ is more reactive than VO3+. VO4+ pocesses only one η2-O2 unit. Due to the weak bond between VO2+ and η2-O2, the η2-O2 unit is released in VO4+/n-C5H12 system leading to the formation of VO2+; thus VO4+ cations reflect some reactivity of VO2+. Although the oxidation states in the vanadium oxide clusters increase from +Ⅲ in VO+ to +Ⅴ in VO2+ and +Ⅳ in VO3+, the reactivity does not gradually increase. Moreover, the reactivity of the mononuclear vanadium oxide cations also does not exhibit a gradually increasing trend with the increase in oxygen content. Based on the observed reactivity trend, the adsorption channels gradually become weak as the carbon chain lengths increase; meanwhile, the dehydrogenation and C―C bond activation channels gradually become obvious and some oxygen transfer products appear. Therefore, much lighter fragments of alkanes/alkenes will be obtained if linear alkanes with more carbon atoms were reacted with VO1−4+. The theoretical results are generally consistent with those obtained from the experiments. The various reaction channels and versatile reactivity of the mononuclear vanadium oxide cations investigated in this study not only offer new insights into gas-phase reactions but also shed light on the processes occurring on the surfaces of the corresponding condensed-phase catalysts.  相似文献   

9.
New physical property data are reported for the compounds VCl2 and VCl3. Both compounds hydrolyse and oxidise in acidic aqueous solution, the former rapidly and the latter slowly. They are slightly soluble in organic solvents and the solutions are stable when protected from moisture and oxygen of the air. Heated in air, VCl2 begins to oxidise to V2O5, around 300°, but some formation and volatilisation of VOCl3 occurs; under similar conditions VCl3 is converted to volatile VOCl3 around 250°. Heated in argon, VCl2 volatilises at 1000°, whereas VCl3 first disproportionates at 600° to volatile VCl4 and solid VCl2, and the latter volatilises as the temperature is raised to 1000°. X-ray diffraction data are given for VCl2.  相似文献   

10.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

11.
The thermal decomposition of zinc acetate dihydrate Zn(CH3CO2)2·2H2O in some humidity-controlled atmospheres has been successfully investigated by novel thermal analyses, which are sample-controlled thermogravimetry (SCTG), thermogravimety combined with evolved gas analysis using mass spectrometry (TG–MS) and simultaneous measurement of differential scanning calorimetry and X-ray diffractometry (XRD–DSC). The thermal processes of anhydrous zinc acetate in dry gas atmosphere by conventional linear heating experiment initiated with the sublimation around 180 °C, followed by the fusion and the decomposition over 250 °C. SCTG was useful to interpret clearly the successive reaction because the high-temperature parallel decompositions were effectively inhibited. The thermal behavior changed dramatically by introducing water vapor in the atmosphere and the thermal process was quite different from that in dry gas atmosphere. Zinc oxide (ZnO) was formed only in a humidity-controlled atmosphere, and could be easily synthesized at temperatures below 300 °C. XRD–DSC equipped with a humidity generator revealed directly the crystalline change from Zn(CH3CO2)2 to ZnO. A detailed thermal process of Zn(CH3CO2)2·2H2O and the effect of water vapor are discussed.  相似文献   

12.
The complexes, M[M(C2O4)3xH2 O, where x=4 for M=Cr(III), x=2 for M=Sb(III) and x=9 for M=La(III) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR and electronic spectral data, conductivity measurement and powder X-ray diffraction (XRD) studies. The chromium(III)tris(oxalato)chromate(III)tetrahydrate (COT), Cr[Cr(C2 O4)3]·4H2O, released water in a stepwise fashion. Removal of the last trace of water was accompanied by a partial decomposition of the oxalate group. Thermal investigation using TG, DTG and DTA techniques in air produced Cr2O3 at 858°C through the intermediate formation of Cr2O3 and CrC2O4 at around 460°C. While DSC study in nitrogen up to 670°C produced a mixture of Cr2O3 and CrC2O4. In antimony(III)tris(oxalato)antimonate(III)dihydrate (AOD), Sb[Sb(C2O4)3]·3H2O the dehydration took place during the decomposition of precursor at 170–290°C and finally at ca. 610°C Sb2 O5 along with trace amounts of Sb2O4 were produced. Trace amount of Sb2O3 and Sb along with Sb2O is proposed as the end product at 670°C of AOD in nitrogen. The oxide La2O3 is formed at 838°C from the study with TG, DTG and DTA in air of lanthanum(III)tris(oxalato)lanthanum(III)nonahydrate (LON), La[La(C2O4)3]·9H2O. Intermediate dioxycarbonate, La2O2CO3 was generated at 526°C prior to its decomposition to lanthanum oxide in air; whereas in N2 the formation of La2(CO3)3 at 651°C was proposed. The thermal parameters have been evaluated for each step of the dehydration and decomposition of COT, AOD and LON using five non-mechanistic equations i.e. Flynn and Wall, Freeman and Carroll, Modified Freeman and Carroll, Coats–Redfern and MacCallum–Tanner equations. Kinetic parameters, such as, E*, ko, ΔH*, ΔS* etc. were also supplemented by DSC studies in nitrogen for all the three complexes. Some of the intermediate species have been identified by analytical and powder XRD studies. Tentative schemes has been proposed for the decomposition of all three compounds in air and nitrogen.  相似文献   

13.
Potassium cobalt hexacyanoferrate(II), K2CoFe(CN)6 · 1.4H2O, loses its water when heated up to 170°C, and the anhydrous compound begins to decompose above 230°C. The cyanide groups are evaporated off in the temperature range 230–350°C, and the solid products thus formed are K2CO3, Fe2O3, Co3O4 and CoFe2O4. In the range 550–900°C, the cobalt-containing compounds become CoO, and K2CO3 probably partly decomposes to K2O, so that the product mixture at 900°C is K2CO3/K2O, Fe2O3 and CoO. Above this temperature, K2CO3 decomposes to K2O.  相似文献   

14.
Simultaneous NO reduction and CO oxidation in the presence of O2, H2O and SO2 over Cu/Mg/Al/O (Cu-cat), Ce/Mg/Al/O (Ce-cat) and Cu/Ce/Mg/Al/O (CuCe-cat) were studied. At low temperatures (<340 °C), the presence of O2 or H2O enhanced the activity of CuCe-cat for NO and CO conversions, but significantly suppressed the activity of Cu-cat and Ce-cat. At high temperature (720 °C), the presence of O2 or H2O had no adverse effect on the NO and CO conversions over these catalysts. The addition of SO2 to NO+CO+O2+H2O system had no effect on the reaction of CO+O2 over Cu-cat, but deactivated this catalyst for NO+CO and CO+H2O reactions; over Ce-cat, all of these reactions of NO+CO,CO+O2 and CO+H2O were suppressed significantly; over CuCe-cat, NO+CO and CO+O2 reactions were not affected while the reaction of CO+H2O was slightly inhibited.  相似文献   

15.
The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied by using a synthetic method based on conductivity measurements.

Two isotherms were established at 0 and 15 °C, and the stable solid phases which appear are the iron nitrate nonahydrate (Fe(NO3)3·9H2O), the iron nitrate hexahydrate (Fe(NO3)3·6H2O), the cobalt nitrate hexahydrate (Co(NO3)2·6H2O) and the cobalt nitrate trihydrate (Co(NO3)2·3H2O).  相似文献   


16.
TG, DTG and DTA have been used in non-isothermal investigations of binary systems of Ni2O3 and La2O3 with barium perchlorate trihydrate, BP·3 H2O, in various molar ratios, carried out under an air (static) atmosphere from ambient to 1000°C. Ni2O3 catalysed the dehydration process of BP·3 H2O and lowered its Tf by 20°C. The discontinuity on the TG curve due to an incomplete perchlorate—chlorate reaction vanished in the presence of either of the oxides: a mechanism is proposed. La2O3 lowered Tf by 50°C; Ti for the decomposition of BP was lowered by 150 and 100°C in the presence of La2O3 and Ni2O3, respectively. X-Ray diffractometry did not reveal any reaction between BP and the two oxides. Kinetic parameters for the decomposition steps in the presence of either of the oxides have been determined.  相似文献   

17.
通过水热方法合成了2个由多铌酸盐和过渡金属配合物形成的有机-无机杂化配合物[Cu(TETA)]4[VNb12(VO)4O40][OH]·10H2O(1)和[Cu(TETA)]4[VNb12(VO)6O40][OH]5·5H2O(2)(TETA=三亚乙基四胺). 化合物1和2的多阴离子分别是由4个{VO5}帽和6个{VO5}帽加盖在Keggin型多铌酸盐的方形缺口上形成的, 它们通过多酸阴离子中Nb-Ot (Ot =端氧)与[Cu(TETA)]2+配合物的金属中心配位构筑形成三维结构. 价键计算结果表明, Keggin中心的钒为+5价, 帽位的钒为+4价, X射线光电子能谱分析(XPS)结果也证实了这一结论. 通过单晶X射线衍射分析、红外光谱(IR)、粉末X射线衍射(PXRD)、热重(TG)分析和元素分析对这2个化合物的结构和性质进行了表征.  相似文献   

18.
G. Favero  U. Russo  M. Vidali  B. Zarli 《Polyhedron》1988,7(24):2703-2707
With the binucleating ligand 1-oxy-2,6-di [(N,N-biscarboxymethyl)aminomethyl]- 4-chlorobenzol (H5L) complexes of formulae FeH2L · 2H2O; FeH3L(C1O4) · H2O; Fe2L(OH) · 2H2O; M2HL · nH2O (M = Co, Cu, n = 2; M = Ni, n = 4); FeCuL · 3H2O; FeCrL(OH) · 3H2O were prepared and characterized by elemental analysis, IR and electronic spectra and magnetic moment determinations. In addition, thermal analysis data of the complexes and Mössbauer effect spectra of the iron containing complexes are also given and discussed.  相似文献   

19.
A thermoanalyzer (Mettler) combined with a quadrupole mass spectrometer (Balzers) by a capillary inlet system allows simultaneous DTA, TG and evolved gas analysis in different atmospheres. Decomposition of CaC2O4·H2O in air and argon, respectively, demonstrates the usefulness of the mass spectrometer for the quantitative determination of H2O, CO2 and CO. Decomposition of NaHCO3 at a heating rate of 10°C min−1 reveals that H2O and CO2 evolved simultaneously at a relatively low temperature (159°C) can also be determined quantitatively and nearly without retardation compared with the weight loss step. In the investigation of clays an example will be given of the usefulness of the described DTA—TG—MS in the quantitative interpretation of overlapping reactions.  相似文献   

20.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号