首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Solvation dynamics and anisotropy decay of coumarin 480 (C480) in a supramolecular assembly containing a triblock copolymer, PEO20-PPO70-PEO20 (Pluronic P123) and a surfactant, CTAC (cetyl trimethylammonium chloride) are studied by femtosecond up-conversion. In a P123-CTAC complex, C480 displays a significant (22 nm) red edge excitation shift (REES) in the emission maximum as lambda ex increases from 335 to 445 nm. This suggests that the P123-CTAC aggregate is quite heterogeneous. The average rotational relaxation time (tau rot) of C480 in a P123-CTAC complex decreases by a factor of 2 from 2500 ps at lambda ex = 375 nm to 1200 ps at lambda ex = 435 nm. For lambda ex = 375 nm, the probe molecules in the buried core region of P123-CTAC are excited and the solvation dynamics displays three components, 2, 60, and 4000 ps. It is argued that insertion of CTAC in P123 micelle affects the polymer chain dynamics, and this leads to reduction of the 130 ps component of P123 micelle to 60 ps in P123-CTAC. For lambda ex = 435 nm, which selects the peripheral highly polar corona region, solvation dynamics in P123-CTAC and P123 are extremely fast with a major component of <0.3 ps ( approximately 80%) and a 2 ps ( approximately 20%) component.  相似文献   

2.
The triblock copolymer (PEO)20-(PPO)70-(PEO)20 (P123) forms a supramolecular aggregate with sodium dodecyl sulfate (SDS). The solvation dynamics and anisotropy decay of coumarin 480 (C480) in different regions of a P123-SDS aggregate are studied through variation of the excitation wavelength (lambdaex) using femtosecond upconversion. In a P123 micelle, because of the drastic differences in polarity between the hydrophilic corona region (PEO block) and the hydrophobic PPO core, C480 exhibits a pronounced red edge excitation shift (REES) of emission maximum by 24 nm. In the P123-SDS aggregate, SDS penetrates the core of the P123 micelle. This increases the polarity of the core and reduces the difference in the polarity between the core and the corona region. In a P123-SDS aggregate, the REES is much smaller (5 nm) which suggests a reduced difference between the core and the corona. Solvation dynamics in a P123 micelle displays a bulklike ultrafast component (<0.3 and 1 ps) in the PEO corona region, a 200 ps component arising from dynamics of polymer segments, and a very long component (5000 or 3000 ps) due to the highly restricted PPO core. In a P123-SDS aggregate, at lambdaex = 375 and 405 nm, the solvation dynamics is found to be faster than that in P123 micelle. In this case, the component (3000 ps) arising from the core region is faster than that (5000 ps) in P123 micelle. In both P123 micelle and P123-SDS aggregate, the relative contribution of the core region decreases and that of the corona region increases with an increase in lambdaex. At lambdaex = 435 nm, which probes the hydrophilic corona, the solvation dynamics for both P123 micelle and P123-SDS aggregate are almost similar.  相似文献   

3.
Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G) is studied in the micelle and the gel phase of a triblock copolymer, (PEO)20-(PPO)70-(PEO)20 (Pluronic P123 (P123)) by picosecond and femtosecond emission spectroscopy. The time constants of FRET were obtained from the rise time of the acceptor (R6G) emission. In a P123 micelle, FRET occurs in multiple time scales: 2.5, 100, and 1700 ps. In the gel phase, three rise components are observed: 3, 150, and 2600 ps. According to a simple F?rster model, the ultrafast (2.5 and 3 ps) components of FRET correspond to donor-acceptor distance RDA=13 +/- 2 A. The ultrafast FRET occurs between a donor and an acceptor residing at close contact at the corona (PEO) region of a P123 micelle. With increase in the excitation wavelength (lambdaex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET ( approximately 3 ps) increases from 13% to 100% in P123 micelle and from 1% to 100% in P123 gel. It is suggested that at lambdaex = 435 nm, mainly the highly polar peripheral region is probed where FRET is very fast due to close proximity of the donor and the acceptor. The 100 and 150 ps components correspond to RDA = 25 +/- 2 A and are ascribed to FRET from C480 deep inside the micelle to an acceptor (R6G) in the peripheral region. The very long component of FRET (1700 ps in micelle and 2600 ps component in gel) may arise from diffusion of the donor from outside the micelle to the interior followed by fast FRET.  相似文献   

4.
In this work, we propose a new analysis of the time resolved emission spectra of a photo-acid, HA, pyranine (8-hydroxypyrene-1,3,6-trisulphonic acid, HPTS) based on time resolved area normalized emission spectra (TRANES). Presence of an isoemissive point in TRANES confirms the presence of two emissive species (HA and A) inside the system in bulk water and inside a co-polymer hydrogel [F127, (PEO)100–(PPO)70–(PEO)100]. We show that following electronic excitation, the local pH around HPTS, is much lower than the bulk pH presumably because of ejection of proton from the photo-acid in the excited state. With increase in time, the local pH increases and reaches the bulk value. We further, demonstrate that the excited state pKa of HPTS may be estimated from the emission intensities of HA and A at long time. The time constant for time evolution of pH is ∼630 ps in water, ∼1300 ps in F127 gel and ∼4700 ps in CTAB micelle. The location and local viscosity sensed by the probe is ascertained using fluorescence correlation spectroscopy (FCS) and fluorescence anisotropy decay. The different values of the local viscosity reported by these two methods are reconciled.  相似文献   

5.
Excited-state proton transfer (ESPT) from pyranine (8-hydroxypyrene-1,3,6-trisulfonate, HPTS) to acetate has been studied by picosecond and femtosecond emission spectroscopy in gamma-cyclodextrin (gamma-CD) and 2-hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) cavities. In both the CDs, ESPT from HPTS to acetate is found to be very much slower (90 and 200 ps) than that in bulk water (0.15 and 6 ps). From molecular modeling, it is shown that in the cyclodextrin cavity the acetate is separated from the OH group of HPTS by water bridges. As a result, proton transfer in the cavity requires rearrangement of the hydrogen-bond network involving the cyclodextrin. This is responsible for the marked slowdown of ESPT. ESPT of HPTS in substituted gamma-CD is found to be slower than that in the unsubstituted one. This is attributed to the hydroxypropyl groups, which prevent close approach of acetate to HPTS.  相似文献   

6.
Femtosecond solvation dynamics of coumarin 480 (C480) in a mixed micelle is reported. The mixed micelle consists of a triblock copolymer (PEO)20-(PPO) 70-(PEO)20 (Pluronic P123) and an ionic liquid (IL), 1-pentyl-3-methylimidazolium tetrafluoroborate ([pmim][BF4]). At a low concentration (0.3 M), the sparingly water soluble IL ([pmim][BF4]) penetrates the hydrophobic PPO core of the P123 micelles. Thus emission maximum of C480 in the core (accessed at lambdaex=375 nm) in 0.3 M IL is red-shifted by 8 nm from that in its absence and the red edge excitation shift (REES) is large (19+/-1 nm). At a high concentration (0.9 M), the ionic liquid [pmim][BF4] invades both the core and corona region and the mixed micelle exhibits very small REES (3+/-1 nm). Anisotropy decay and solvation dynamics in different regions of the mixed micelle are studied by variation of excitation wavelength (lambda ex). In P123 micelle, the average rotational time () is 2800 ps in the core (at lambdaex=375 nm) and 1350 ps in the corona region (at lambdaex=435 nm). In 0.3 M [pmim][BF4], tau rot at the core of the mixed micelle decreases to 1950 ps while that in the corona remains unaffected. In 0.9 M IL, both the core and corona (lambda ex=375 and 435 nm) exhibit similar and short approximately 600 ps. In 0.3 M IL, solvation dynamics in the core region (lambdaex=375 nm) of P123 micelle is about 2 times faster than in its absence. In 0.3 M IL, solvation dynamics in the corona region (lambdaex=435 nm) is approximately 100 times faster than that in the core. In 0.9 M IL, the solvation dynamics in the core and in the corona is, respectively, approximately 9 times and 4 times faster than that in 0.3 M IL.  相似文献   

7.
Ultrafast fluorescence resonance energy transfer (FRET) from coumarin 153 (C153) to rhodamine 6G (R6G) is studied in a neutral PEO(20)-PPO(70)-PEO(20) triblock copolymer (P123) micelle and an anionic micelle (sodium dodecyl sulfate, SDS) using a femtosecond up-conversion setup. Time constants of FRET were determined from the rise time of the acceptor emission. It is shown that a micelle increases efficiency of FRET by holding the donor and the acceptor at a close distance (intramicellar FRET) and also by tuning the donor and acceptor energies. It is demonstrated that in the P123 micelle, intramicellar FRET (i.e., donor and acceptor in same micelle) occurs in 1.2 and 24 ps. In SDS micelle, there are two ultrafast components (0.7 and 13 ps) corresponding to intramicellar FRET. The role of diffusion is found to be minor in the ultrafast components of FRET. We also detected a much longer component (1000 ps) for intramicellar FRET in the larger P123 micelle.  相似文献   

8.
Ultrafast photoinduced electron transfer (PET) from N,N-dimethylaniline (DMA) to coumarin dyes is studied in the micelle and the gel phase of a triblock copolymer, (PEO)(20)-(PPO)(70)-(PEO)(20) (Pluronic P123) by picosecond and femtosecond emission spectroscopies. The rate of PET in a P123 micelle and gel is found to be nonexponential and faster than the slow components of solvation dynamics. In a P123 micelle and gel, PET occurs on multiple time scales ranging from a subpicosecond time scale to a few nanoseconds. In the gel phase, the highest rate constant (9.3 x 10(9) M(-1) s(-1)) of ET for C152 is about two times higher than that (3.8 x 10(9) M(-1) s(-1)) observed in micelle phase. The ultrafast components of electron transfer (ET) exhibits a bell shaped dependence with the free energy change which is similar to the Marcus inversion. Possible reasons for slower PET in P123 micelle compared to other micelles and relative to P123 gel are discussed.  相似文献   

9.
The formation of triblock copolymer/surfactant complexes upon mixing a nonionic Pluronic polymer (PEO-PPO-PEO) with a cationic surfactant, hexadecyltrimethylammonium chloride (CTAC), has been studied in dilute aqueous solutions using small-angle X-ray scattering, static and dynamic light scattering, and self-diffusion NMR. The studied copolymer (denoted P123, EO(20)PO(68)EO(20)) forms micelles with a radius of 10 nm and a molecular weight of 7.5 x 10(5), composed of a hydrophobic PPO-rich core of radius 4 nm and a water swollen PEO corona. The P123/CTAC system has been investigated between 1 and 5 wt % P123 and with varying surfactant concentration up to approximately 170 mM CTAC (or a molar ratio n(CTAC)/n(P123) = 19.3). When CTAC is mixed with micellar P123 solutions, two different types of complexes are observed at various CTAC concentrations. At low molar ratios (>/=0.5) a "P123 micelle-CTAC" complex is obtained as the CTAC monomers associate noncooperatively with the P123 micelle, forming a spherical complex. Here, an increased interaction between the complexes with increasing CTAC concentration is observed. The interaction has been investigated by determining the structure factor obtained by using the generalized indirect Fourier transformation (GIFT) method. The interaction between the P123 micelle-CTAC complexes was modeled using the Percus-Yevick closure. For the low molar ratios a small decrease in the apparent molecular weight of the complex was obtained, whereas the major effect was the increase in electrostatic repulsion between the complexes. Between molar ratios 1.9 and 9 two coexisting complexes were found, one P123 micelle-CTAC complex and one "CTAC-P123" complex. The latter one consists of one or a few P123 unimers and a few CTAC monomers. As the CTAC concentration increases above a molar ratio of 9, the P123 micelles are broken up and only the CTAC-P123 complex that is slightly smaller than a CTAC micelle exists. The interaction between the P123/CTAC complexes was modeled with the hypernetted-chain closure using a Yukawa type potential in the GIFT analysis, due to the stronger electrostatic repulsion.  相似文献   

10.
Excitation wavelength (lambdaex) dependence of solvation dynamics of coumarin 480 (C480) in the micellar core of a water soluble triblock copolymer, PEO20-PPO70-PEO20 (Pluronic P123), is studied by femtosecond and picosecond time resolved emission spectroscopies. In the P123 micelle, the width of the emission spectrum of C480 is found to be much larger than that in bulk water. This suggests that the P123 micelle is more heterogeneous than bulk water. The steady state emission maximum of C480 in P123 micelle shows a significant red edge excitation shift by 25 nm from 453 nm at lambdaex=345 nm to 478 nm at lambdaex=435 nm. The solvation dynamics in the interior of the triblock copolymer micelle is found to depend strongly on the excitation wavelength. The excitation wavelength dependence is ascribed to a wide distribution of locations of C480 molecules in the P123 micelle with two extreme environments-a bulklike peripheral region with very fast solvent response and a very slow core region. With increase in lambdaex, contribution of the bulklike region having an ultrafast component (< or =2 ps) increases from 7% at lambdaex=375 nm to 78% at lambda(ex)=425 nm while the contribution of the ultraslow component (4500 ps) decreases from 79% to 17%.  相似文献   

11.
Effect of electrostatic interaction on the location of a solubilized molecular probe with ionic character in a supramolecular assembly composed of a triblock copolymer, P123 ((ethylene oxide) 20-(propylene oxide) 70-(ethylene oxide) 20) and a cosurfactant cetyltrimethylammonium chloride (CTAC) in aqueous medium has been studied using steady-state and time-resolved fluorescence measurements. Coumarin-343 dye in its anionic form has been used as the molecular probe. In the absence of the surfactant, CTAC, the probe C343 prefers to reside at the surface region of the P123 micelle, showing a relatively less dynamic Stokes' shift, as a large part of the Stokes' shift is missed in the present measurements due to faster solvent relaxation at micellar surface region. As the concentration of CTAC is increased in the solution, the percentage of the total dynamic Stokes' shift observed from time-resolved measurements gradually increases until it reaches a saturation value. Observed results have been rationalized on the basis of the mixed micellar structure of the supramolecular assembly, where the hydrocarbon chain of the CTAC surfactant dissolves into the nonpolar poly(propylene oxide) (PPO) core of the P123 micelle and the positively charged headgroup of CTAC resides at the interfacial region between the central PPO core and the surrounding hydrated poly(ethylene oxide) (PEO) shell or the corona region. The electrostatic attraction between the anionic probe molecule and the positively charged surface of the PPO core developed by the presence of CTAC results in a gradual shift of the probe in the deeper region of the micellar corona region with an increase in the CTAC concentration, as clearly manifested from the solvation dynamics results.  相似文献   

12.
A femtosecond pump-probe, with approximately 150 fs resolution, as well as time-correlated single photon counting with approximately 10 ps resolution techniques are used to probe the excited-state intermolecular proton transfer from HPTS to water. The pump-probe signal consists of two ultrafast components (approximately 0.8 and 3 ps) that precede the relatively slow (approximately 100 ps) component. From a comparative study of the excited acid properties in water and methanol and of its conjugate base in basic solution of water, we propose a modified mechanism for the ESPT consisting of two reactive steps followed by a diffusive step. In the first, fast, step the photoacid dissociates at about 10 ps to form a contact ion pair RO-*...H3O+. The contact ion pair recombines efficiently to re-form the photoacid with a recombination rate constant twice as large as the dissociation rate constant. The first-step equilibrium constant value is about 0.5 and thus, at short times, <10 ps, only approximately 30% of the excited photoacid molecules are in the form of the conjugated base-proton contact ion pair. In the second, slower, step, of about 100 ps, the proton is separated by at least one water molecule from the conjugate base RO-. The separated proton and the conjugated base can recombine geminately as described by our previous diffusion-assisted model. The new two-step reactive model predicts that the population of the ROH form of HPTS will decrease with two time constants and the RO- population will increase by the same time constants. The proposed model fits the experimental data of this study as well as previous published experimental data.  相似文献   

13.
Conductivity and surface tension measurements have been carried out at temperatures between 298.15 K for cetyltrimethylammonium Chloride (CTAC) + H2O and CTAC + Cucurbit[7]uril (CB[7]) + H2O systems. The apparent critical micelle concentrations, the dissociation degree of the micelle, the hydrophobic contribution of the transfer free energy for the hydrocarbon chain of CTAC, the stoichoimetry and inclusion constants for the inclusion complex of CTAC with CB[7] have been determined. The influence of CB[7] and its complex on the micellization processes of CTAC is analyzed. It is shown that CB[7] partly screened the hydrophobic hydrocarbon chain of CTAC molecules from contact with the surrounding medium, and retarded the formation of CTAC micelles in a certain extent. CB[7] and the inclusion complex do not have any surface activity. The CB[7] and its complexes do not participate the formation of micelles of CTAC, and the complex has no effect on the micelle properties once the micelles are formed. The result suggests that β-CB[7] forms strong complex with CTAC, and the stoichoimetry is found to be 1:1, and the inclusion constants of CB[7]-CTAC complex are almost the same in different CB[7] solutions.  相似文献   

14.
Dynamic fluorescence Stokes shift measurements of coumarin 153 (C153) have been carried out to study the influence of ionic surfactants (sodium dodecyl sulfate, SDS and hexadecyltrimethylammonium chloride, CTAC) on the hydration behavior of aqueous poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)20 (P123) block copolymer micelles. Increase in SDS or CTAC concentration at a fixed P123 concentration induces the steady-state emission spectra of C153 to shift gradually toward lower energy. This is attributed to an increase in polarity (due to enhanced hydration) experienced by the probe as a consequence of incorporation of ionic head groups in the Corona region. The observed dynamic fluorescence Stokes shift value decreases more in mixed micellar systems than in pure copolymer micelles and the trends are quite similar in the presence of SDS and CTAC. The spectral shift correlation functions were observed to be nonexponential in nature. Critical analysis of the spectral shift correlation function indicates a fast solvation component (<0.2 ns) in P123 micelles, which was absent in the presence of ionic surfactants. Due to increased hydration in the presence of ionic surfactants, the initial fast solvation event was elusive in mixed copolymer-surfactant systems, reflecting the absence of faster solvation component and reduced observed Stokes shift in mixed systems. It has been argued that in the low surfactant concentration region, increase in hydration with the incorporation of ionic head groups in the Corona region is mainly due to increase in mechanically trapped water content. However, at higher surfactant concentrations, bound water content dominates and leads to slower solvation dynamics. The present results also indicate that though CTAC alters the Corona hydration more efficiently than SDS, the overall influence of ionic surfactants on the Corona hydration is grossly similar irrespective of the cationic or anionic nature of the surfactants. Interaction of SDS and CTAC with poly(ethylene oxide)(100)-poly(propylene oxide)(70)-poly(ethylene oxide)(100) (F127) block copolymer micelles has also been studied to comprehend the effect of copolymer composition. The overall trends in dynamic fluorescence Stokes shift and solvation times are similar in both the copolymer micelles.  相似文献   

15.
The effect of micellar environment on the excited state proton transfer (ESPT) of 2-(2'-pyridyl)benzimidazole (2PBI) has been investigated by steady state and time resolved fluorescence spectroscopy. The ESPT, which occurs to a rather small extent at pH 7, is found to be enhanced remarkably at the interface of sodium dodecyl sulfate (SDS) micelles and water. Such an enhancement is not observed for the cationic cetyl trimethyl ammonium bromide (CTAB) or neutral Triton X-100 micelles. This selective enhancement is explained in the light of a modification of pK(a) and a more acidic local pH in the micelle-water interface. A rise time of about 890 ps is observed in the region of tautomer emission. The origin of this rise time is explored, considering three factors, namely, diffusion controlled protonation of the normal form of 2PBI, slow and possibly incomplete solvation of the transition state, leading to a slowing down of the proton transfer process and a similar slow dynamics of the tautomeric excited state.  相似文献   

16.
The functionalized flavylium salt 6-hexyl-7-hydroxy-4-methyflavylium chloride (HHMF) was employed to probe some of the fundamental features of proton transfer reactions at the surface of anionic sodium dodecyl sulfate (SDS) and cationic hexadecyltrimethylammonium chloride (CTAC) micelles. In contrast to most ordinary flavylium salts, HHMF is insoluble in water, but readily incorporates into SDS and CTAC micelles. In the ground state, the rate constant for deprotonation of the acid form (AH+) of HHMF decreases 100-fold upon going from CTAC (kd = 3.0 x 10(6) s(-1)) to SDS (kd = 1.4 x 10(4) s(-1)), consistent with the presence of an activation barrier for proton transfer in the ground state and reflecting, respectively, stabilization or destabilization of the AH+ cation by the micelle. Reprotonation of A is diffusion-controlled in both micelles (kp(SDS) = (2.1 x 10(11))[H+]aq s(-1) and kp(CTAC) = (3.7 x 10(8))[H+]aq s(-1)), the difference reflecting the rate of proton entry into the micelles. In the excited singlet state, the rate constants for deprotonation of the AH+* form of HHMF are similar in the two micelles (2.4 x 10(10) s(-1)), consistent with activationless proton transfer. Reprotonation of the excited A is dominated by fast geminate recombination of the photogenerated (A*-H+) pair at the micelle surface (k(rec)(SDS) = 6.1 x 10(9) s(-1) and k(rec)(CTAC) = 3.4 x 10(10) s(-1)) and the net efficiencies of geminate recombination are quite similar in SDS (0.89) and CTAC (0.86).  相似文献   

17.
The interaction of poly(ethylene oxide)(PEO)with the ionic surfactants,sodium dodecylsulfate(SDS)and cetyltrimethylammonium chloride(CTAC)respectively,in aqueous solutions containing a certain concentration of NH4Cl,is studied by the viscosity measurement.It has been found that the ion-dipole interaction between PEO and ionic surfactants is changed considerably by the organic salt.For anionic surfactant of SDS,the addition of NH4Cl into solution strengthens the interaction between PEO and the headgroup of SDS.On the other hand,for cationic surfactant of CTAC,the interaction between PEO and the headgroup of CTAC is screened significantly by NH4Cl dissolved in solution.These findings may potentially be attributed to the negative property of the oxygen group of the PEO chain.In the presence of NH4Cl,the cationic ions of the organic salt bind to the oxygen group of the PEO chain so that PEO can be referred to as a pseudopolyelectrolyte in solution.  相似文献   

18.
The interaction of poly(ethylene oxide)(PEO)with the ionic surfactants,sodium dodecylsulfate(SDS)and cetyltrimethylammonium chloride(CTAC)respectively,in aqueous solutions containing a certain concentration of NH_4Cl, is studied by the viscosity measurement.It has been found that the ion-dipole interaction between PEO and ionic surfactants is changed considerably by the organic salt.For anionic suffactant of SDS,the addition of NH_4Cl into solution strengthens the interaction between PEO and the headgrou...  相似文献   

19.
The effect of two room-temperature ionic liquids (RTILs) on the diffusion of three fluorescent dyes in the gel phase of a triblock copolymer, (PEO)(20)-(PPO)(70)-(PEO)(20) [Pluronic P123; poly ethylene oxide (PEO), poly propylene oxide (PPO)], was studied by using fluorescence correlation spectroscopy (FCS). We used three dyes, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), coumarin 480 (C480), and coumarin 343 (C343). By field-emission scanning electron microscopy (FESEM), it was observed that the macroscopic structure of the P123 gel remained unaffected upon addition of RTIL. In the absence of RTIL, the diffusion coefficient (D(t)) of the hydrophobic dye DCM (1 μm(2) s(-1) at the core) is smaller than that of the other two hydrophilic dyes (7 μm(2) s(-1) for C480 and C343). On addition of RTIL, the D(t) values of all of the dyes increase, indicating a decrease in local viscosity (η(eff)). The η(eff) of the core of the RTIL-P123 gel estimated from the D(t) of DCM is lower than that of both the P123 gel (at the core η=90 cP) and RTIL (η=110 cP). It is shown that the RTIL affects the structure of the gel by modifying the size of the micellar aggregates and by penetrating the core.  相似文献   

20.
Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to fluorescein 548 (F548) in a sodium dioctyl sulfosuccinate (AOT) reverse micelle is studied by picosecond and femtosecond emission spectroscopy. In bulk water, at the low concentration of the donor (C480) and the acceptor (F548), no FRET is observed. However, when the donor (C480) and the acceptor (F548) are confined in a AOT reverse micelle very fast FRET is observed. The time constants of FRET were obtained from the rise time of the emission of the acceptor (F548). In a AOT microemulsion, FRET is found to occur in multiple time scales--3, 200, and 2700 ps. The 3 ps component is assigned to FRET in the water pool of the reverse micelle with a donor-acceptor distance, 16 A. The 200 ps component corresponds to a donor-acceptor distance of 30 A and is ascribed to the negatively charged acceptor inside the water pool and the neutral donor inside the alkyl chains of AOT. The very long 2700 ps component may arise due to FRET from a donor outside the micelle to an acceptor inside the water pool and also from diffusion of the donor from bulk heptane to the reverse micelle. With increase in the excitation wavelength from 375 to 405 nm the relative contribution of the FRET due to C480 in the AOT reverse micelle (the 3 and 200 ps components) increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号