首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A certified matrix reference material (CRM) for the measurement of benzene in ambient air has been developed at Laboratoire National de Métrologie et d’Essais. The production of these CRMs was conducted using a gravimetric method fully traceable to the International System of Units. The CRMs were prepared by sampling an accurate mass of a gaseous primary reference material of benzene, using a high-precision laminar flowmeter and a mass flow controller, with a PerkinElmer sampler filled with Carbopack™ X sorbent. The relative standard deviations obtained for the preparation of a batch of 20 tubes loaded with 500 ng of benzene were below 0.2%. Each CRM is considered independent from the others and with its own certified value and an expanded uncertainty estimated to be within 0.5%, lower than the uncertainties of benzene CRMs already available worldwide. The stability of these materials was also established up to 12 months. These CRMs were implemented during proficiency testing, to evaluate the analytical performances of seven French laboratories involved in benzene air monitoring.  相似文献   

2.
The aim of the study was to analyse BTEX compounds (benzene, toluene, ethylbenzene, xylenes) in air by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS), and this article presents the features of the calibration method proposed. Examples of real-world air analysis are given. Standard gaseous mixtures of BTEX in air were generated by dynamic dilution. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fibre exposed for 30 min to standard gas mixtures or to ambient air. The behaviour of the analytical response was studied from 0 to 65 g/m3 by adding increasing amounts of BTEX to the air matrix. Detection limits range from 0.05 to 0.1 g/m3 for benzene, depending on the fibre. Inter-fibre relative standard deviations (reproducibility) are larger than 18%, although the repeatability for an individual fibre is better than 10%. Therefore, each fibre should be considered to be a particular sampling device, and characterised individually depending on the required accuracy. Sampling indoor and outdoor air by SPME appears to be a suitable short-delay diagnostic method for volatile organic compounds, taking advantage of short sampling time and simplicity.  相似文献   

3.
冯丽丽  胡晓芳  于晓娟  张文英 《色谱》2016,34(2):209-214
采用热脱附(TD)结合气相色谱-三重四极杆串联质谱(GC-MS/MS)建立了环境空气中23种挥发性有机物(VOCs)同时检测的分析方法。空气样品通过主动采样的方式富集到装有Tenax-TA填料的热脱附管中,热解吸后在选择反应监测(SRM)模式下用GC-MS/MS进行检测,内标法定量。结果表明,23种VOCs在0.01~1 ng和1~100 ng低、高两个范围内线性关系良好,相关系数(r2)均大于0.99,方法定量限为0.00008~1 μ g/m3。加标水平为2、10和50 ng时,23种VOCs的平均回收率为77%~124%。除了最低加标水平的氯苯,相对标准偏差(RSD, n=6)均小于20%。对市内3个采样点的环境空气进行测定,其中苯、甲苯、乙苯、二甲苯、苯乙烯、1,2,4-三甲基苯和六氯丁二烯均有检出。实验证明,该TD和GC-MS/MS相结合的检测方法具有准确、可靠、灵敏度高等优点,适用于环境空气中VOCs的同时测定。  相似文献   

4.
A simple analysis of volatile organic compounds (VOCs), such as benzene, toluene, m,p-xylene, and o-xylene, at low levels in the atmosphere was conducted using passive samplers. The methods were applied to analyzing the behavior and origin of VOCs in Kyoto City. The passive samplers were exposed for 7 - 14 days at sampling sites in Kyoto City and for 30 days in the mountains (Mt. Hiei and Mt. Daimonji). Shibata gas-tube samplers packed with activated carbon were used for the determination of VOCs. The absorbed VOCs were extracted into carbon disulfide (CS2) and measured by FID-GC. The determination limits and relative standard deviations for VOCs were 0.3 microg/m3 and 3%, respectively. The samplers were set up at 5 sites in March, 2001 and at 13 stations on Mt. Hiei in November, 2002. The average concentrations of ambient benzene, which were higher than the environmental criterion (3.0 microg/m3), except for those on Mt. Daimonji from March, 2001, to February, 2002, decreased to below 3.0 microg/m3 from March, 2002, to February, 2003. The decrease in ambient benzene may have been due to a decrease in the benzene content in gasoline by the end of 1999, and also by implementation of the Pollutant Release and Transfer Register (PRTR) Act in 2001.  相似文献   

5.
Many air sampling methods are time consuming and require complex pre-treatment steps. Gas chromatography–photoionization detector (GC–PID) is a rapid method for sampling and analysis. However, although it has been used in a number of studies, its operating conditions and performance parameters have not been optimized systematically. In this study, a GC–PID method for analysis of monocyclic aromatic hydrocarbons in gas samples without pre-concentration or enrichment was developed and optimized. This GC–PID can perform both online and off-line analysis. In online analysis, the sample was pumped directly into a Teflon sample loop (pumped online injection), which resulted in minimal loss of sample. The optimum parameters were as follows: 30-s pumping time, 10 mL min?1 of carrier gas flow rate, and 40 °C oven temperature. GC–PID was applied to analysis of benzene, toluene and xylene. The calibration curves showed good linearity for online analysis. The results obtained by GC–PID were accurate and reliable, with all the correlation coefficients ≥0.9972 and all the relative standard deviations <3%. A mixture of benzene, toluene, and o-, m-, and p-xylenes was separated satisfactorily in 10 min, except for m- and p-xylene. The performance of the portable GC–PID was compared with that of an ATD–GC–FID for quantification of benzene, toluene and xylene in calibration gas samples, and benzene, toluene, ethylbenzene, and the o-, m-, and p-xylenes in outdoor ambient air. The results indicated that GC–PID with pumped online injection was stable and accurate for analysis of these monocyclic aromatic hydrocarbons.  相似文献   

6.
A solid-phase microextraction (SPME) method was developed for air monitoring of organic solvents frequently used in chemical laboratories (namely pentane, dimethyl ether, acetone, acetonitrile, dichloromethane, hexane, ethylacetate, tetrahydrofurane, cyclohexane, benzene, and toluene). SPME sampling conditions and chromatographic separation were optimised. Linearity of response for each component of the mixture was tested. Standard solutions containing all the compounds, at three different concentrations, were analysed in triplicate and the relative standard deviations (RSDs) were calculated. The method was applied to the monitoring of indoor air in a research chemical laboratory. An SPME fibre was used as a sampling device inside the laboratory. Moreover an SPME fibre was used as a portable sampling device in order to determine the effective human exposure. Comparison of the portable and fixed sampling device showed differences in the amount of solvents associated with activities performed nearby.  相似文献   

7.
Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1–2 μg/m3 are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.  相似文献   

8.
Benzene is classified as a Group I carcinogen by the International Agency for Research on Cancer (IARC). The risk assessment for benzene can be performed by monitoring environmental and occupational air, as well as biological monitoring through biomarkers. The present work developed and validated methods for benzene analysis by GC/MS using SPME as the sampling technique for ambient air and breath. The results of the analysis of air in parks and avenues demonstrated a significant difference, with average values of 4.05 and 18.26 μg m−3, respectively, for benzene. Sampling of air in the occupational environment furnished an average of 3.41 and 39.81 μg m−3. Moreover, the correlations between ambient air and expired air showed a significant tendency to linearity (R 2 = 0.850 and R 2 = 0.879). The results obtained for two groups of employees (31.91 and 72.62 μg m−3) presented the same trend as that from the analysis of environmental air.  相似文献   

9.
A method was developed for sampling and selective quantitative determination of typical volatile organic compounds (VOCs) in ambient urban air. A mobile and self-contained dual-channel air sampling tool based on solid phase adsorption was constructed. A simple calibration procedure circumventing the adsorption/desorption process was designed. The method was validated for seven “key-analytes”: n-hexane, 3-methyl-2-pentene, benzene, tetrachloroethene, styrene, 1,2,4-trimethylbenzene and acetophenone. The complete air sampling equipment is easily accommodated in a business suitcase. The lower limits of the practical working ranges are between 0.1 μg m–3 (tetrachloroethene) and 1.2 μg m–3 (benzene). Air samples were collected at a location in Salzburg with heavy motor vehicle traffic and measured in order to prove a satisfactory method performance under practical monitoring conditions.  相似文献   

10.
用活性炭采样管富集车间空气中的苯系物,以二硫化碳为解吸剂,经毛细管柱GC—MS选择离子法测定样品中苯系物,峰面积定量。  相似文献   

11.
Quantification of unsymmetrical dimethylhydrazine transformation products in ambient air is important for assessing the environmental impact of heavy rocket launches. There are very little data of such analyses, which is mainly caused by the low number of analytes covered by the available analytical methods and their complexity. A simple and cost-efficient method for accurate simultaneous determination of seven unsymmetrical dimethylhydrazine transformation products in air using solid-phase microextraction followed by gas chromatography-mass spectrometry was developed. The method was optimized for air sampling and solid-phase microextraction from 20-mL vials, which allows full automation of analysis. The extraction for 5 min by Carboxen/polydimethylsiloxane fiber from amber vials and desorption for 3 min provided the greatest analytes' responses, lowest relative standard deviations, linear calibration (R2 ≥ 0.99), and limits of detection from 0.12 to 0.5 μg/m3. Samples with concentrations 500 μg/m3 can be stored at 21 ± 1°C without substantial losses (1–11%) for up to 24 h, while air samples with concentrations 10 and 50 μg/m3 stored for up to 24 h can be used for accurate quantification of only two and four out of seven analytes, respectively. The developed method was successfully tested for the analysis of air above real soil samples contaminated with unsymmetrical dimethylhydrazine rocket fuel.  相似文献   

12.
刘洪媛  金静  郭崔崔  陈吉平  胡春 《色谱》2022,40(7):644-652
环境空气中的多氯萘(PCNs)一般为痕量水平(pg/m^(3)),要实现其准确定量必然对分析方法的提取、净化和仪器分析提出较高要求。研究通过考察提取溶剂种类、净化流程和色谱-质谱参数,建立了加速溶剂萃取(ASE)-多层硅胶复合中性氧化铝柱的净化方法,并利用同位素稀释气相色谱-三重四极杆质谱(GC-MS/MS)对环境空气中的多氯萘进行测定。同时,通过在采样、提取和进样分析前分别添加同位素内标,开展质量控制和保证。结果表明,在2~100 ng/mL范围内3~8氯萘的平均相对响应因子(RRF)的相对标准偏差(RSD)均小于16%。PCNs同类物的方法检出限为1~3 pg/m^(3)(以样品体积为288 m^(3)计算)。采用基质加标法评价了方法对环境空气样品中PCNs测定的精密度和准确度,低、中、高加标水平下3~8氯萘的平均加标回收率分别为89.0%~119.4%、98.6%~122.5%和93.7%~124.5%,测定结果的平均相对标准偏差分别为1.9%~7.0%、1.6%~6.6%和1.0%~4.8%。整个分析过程中,采样内标和提取内标的平均回收率分别为136.2%~146.0%和42.4%~78.1%,RSD分别为5.6%~7.5%和2.7%~17.5%,满足痕量分析的要求且平行性较好。方法的灵敏度和准确度高,精密度良好,适用于环境空气中3~8氯萘的准确定量测定,可在一定程度上缓解多氯萘监测对高分辨气相色谱-高分辨质谱的依赖,为实现多氯萘的国际履约提供方法支持。  相似文献   

13.
A new method for the determination of benzene at trace levels in air is presented. The method consists of the collection of air samples on adsorbent cartridges with simultaneous adsorption of pre-established amounts of D6-labeled internal standard. Desorption from the cartridge is performed by solid-phase microextraction (SPME) with analysis by gas chromatography/mass spectrometry (GC/MS) using an ion trap mass spectrometer. The influence of several parameters (type of SPME fiber, temperature, time, for example) was investigated, and good linearity in the range 10-400 ng of C6D6, with a coefficient of variance (CV) around 3-5%, was obtained. The method was tested by sampling air in a town center in Italy, and a benzene concentration of approximately 50 microg/m(3) was determined. The maximum limit recommended by the European Community is 10 microg/m(3).  相似文献   

14.
An isotopic dilution approach for 1,3-butadiene analysis in gaseous samples is presented. The methodology is based on active sampling on sorbent tubes and subsequent analysis by thermal desorption into a gas chromatography/mass spectrometry system. By adding a perdeuterated internal standard onto the sorbent tubes before sampling, and using mass spectrometric detection, the methodology gives high accuracy for this unstable analyte. The method has been used to monitor 1,3-butadiene ambient air concentrations in a residential area in proximity to a heavy-traffic roadway over a one-week period, for comparison with other traffic-related pollutants analysed by standard procedures. It has also been used to determine tailpipe emissions of two vehicles by standard emission testing procedures in a dynamometer. These vehicles were chosen as examples of low- and high-end emission rate vehicles, i.e., an old no-catalytic converter Otto engine and a new direct-injection diesel engine with catalytic converter. Exhaust gas emissions were 0.052 and 35.85 mg/km, reflecting differences in fuel, engine design, age, and presence (or not) of a catalytic abatement system. The ambient air results showed a weekly average concentration of 1,3-butadiene of 0.53 microg/m(3).  相似文献   

15.
A new sampling method for the determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air is described. The method is based on active sampling on sorption tubes consisting of polydimethylsiloxane (PDMS) foam, PDMS particles and a TENAX TA bed. After sampling, the solutes are quantitatively recovered by thermal desorption and analysed by capillary GC-MS. The new sampling method has been compared to the classical method using high-volume sampling on a glass fiber filter followed by polyurethane foam for 24h sampling of ambient air. Volumes enriched were 144 l on the mixed bed and 1296 m3 with the classical method. The concentrations measured using the new method were significantly higher that the values obtained using the classical method, i.e. a factor 1.2-3 for the high molecular weight PAHs and up to 35 times for naphthalene and 23 times for acenaphthene. The total toxicity equivalence value (TEQ) for PAHs was ca. two times higher compared to the conventional method, illustrating that the concentrations of PAHs in ambient air have been underestimated until now. Some figures of merit (mean value for 17 PAHs) of the method are repeatability 7.4%, detection limit 13 pg/m3, accuracy 105.6% and linearity 0.996. The method also opens interesting perspectives for the determination of other semi-volatile persistent organic pollutants (POPs) in air as illustrated with the analysis of polychlorinated biphenyls (PCBs) at a workplace during removal of transformer oil.  相似文献   

16.
A method was developed for sampling and selective quantitative determination of typical volatile organic compounds (VOCs) in ambient urban air. A mobile and self-contained dual-channel air sampling tool based on solid phase adsorption was constructed. A simple calibration procedure circumventing the adsorption/desorption process was designed. The method was validated for seven “key-analytes”: n-hexane, 3-methyl-2-pentene, benzene, tetrachloroethene, styrene, 1,2,4-trimethylbenzene and acetophenone. The complete air sampling equipment is easily accommodated in a business suitcase. The lower limits of the practical working ranges are between 0.1 μg m–3 (tetrachloroethene) and 1.2 μg m–3 (benzene). Air samples were collected at a location in Salzburg with heavy motor vehicle traffic and measured in order to prove a satisfactory method performance under practical monitoring conditions. Received: 4 January 1998 / Revised: 14 September 1998 / Accepted: 21 October  相似文献   

17.
Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.  相似文献   

18.
Here are reported two new sampling method approaches for the determination of naphthalene in ambient air for concentrations from 0.25 to 18.7?µg/L. The first method used for gas phase naphthalene analysis produced an average recovery of 88.8% and the second method using headspace sampling produced an average recovery of 93.8%. The second method showed better recovery than the former, so it was used for subsequent comparative gas-phase determination of naphthalene. The second method was validated at various naphthalene concentrations and humidity using a naphthalene gas generator to produce various naphthalene standards and a naphthalene-monitoring instrument. The naphthalene concentrations generated using the gas generator and determined second sampling method with gas chromatography–mass spectrometry (GC–MS) were compared to the sensor measurements and were in good agreement. In summary, the sampling methods presented provided reliable gas-phase naphthalene determination when coupled with GC–MS.  相似文献   

19.
朱晓平  马慧莲  朱秀华  陈吉平 《色谱》2019,37(11):1228-1234
采用热脱附-气相色谱-质谱法,建立了同时分析环境空气中67种挥发性有机物的分析方法。对比了5种不同填充材料不锈钢吸附管对78种挥发性有机物的吸附能力。填充材料为Tenax TA和Carbograph 1TD的混合填料吸附管对分析物的捕集效果最好,在30 mL/min高纯He气持续吹脱45 min的情况下,未发生穿透(即穿透率小于10%)的化合物达67种,分析物的种类包括芳香烃、脂肪烃、卤代烃和含氧挥发性有机物等。优化了使用该吸附管测定67种目标物时的热脱附条件。在5~100 ng范围内,目标化合物的色谱响应值与其量间具有良好的线性关系,其相关系数(r)均在1.0000~0.9977之间。方法检出限为0.3~2.4 ng,以采样体积1 L计算,检出限为0.3~2.4 μg/m3。加标量为20 ng时,7次重复实验目标化合物回收率均在81.6%~114.9%之间,目标化合物的相对标准偏差为1.2%~10.1%。采用该方法对某车厢内空气进行了检测,检出了包括酯类、卤代烷烃、卤代烯烃以及芳香族化合物在内的19种目标化合物,其范围为1.1~84.1 μg/m3。该方法准确、可靠、灵敏度高,实现了对环境空气中67种目标污染物的准确定量。  相似文献   

20.
Developments in the sampling and determination of pesticides in ambient air have been discussed and data on the occurrence of pesticides in atmosphere have been presented. Developments in active sampling methods were reviewed and the different materials used for trapping pesticides from gas and particulate phases were discussed. Likewise, the use and developments of passive air samplers were reviewed. This article pays special attention to the analysis of pesticides trapped from ambient air, and recapitulate the procedures for extraction, clean-up and determination of these substances. Improvements in sampling procedures, analytical methods and monitoring activities are necessary to advance the knowledge of occurrence of currently used pesticides in atmosphere and their impact over environment and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号