首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A versatile method was developed for the chain-end functionalization of the grafted polymer chains for surface modification of nanoparticles with functionalized groups through a combination of surface-initiated atom-transfer radical polymerization (ATRP) and Huisgen [3 + 2] cycloaddition. First, the surface of SiO2 nanoparticles was modified with poly(methyl methacrylate) (PMMA) brushes via the “grafting from” approach. The terminal bromides of PMMA-grafted SiO2 nanoparticles were then transformed into an azide function by nucleophilic substitution. These azido-terminated PMMA brushes on the nanoparticle surface were reacted with alkyne-terminated functional end group via Huisgen [3 + 2] cycloaddition. FTIR and 1H NMR spectra indicated quantitative transformation of the chain ends of PMMA brushes onto SiO2 nanoparticles into the desired functional group. And, the dispersibility of the end-functional polymer-grafted SiO2 nanoparticles was investigated with a transmission electron microscope (TEM).  相似文献   

2.
Aqueous immune magnetite nanoparticles for immunoassay   总被引:1,自引:0,他引:1  
Immune magnetite nanoparticles (MNPs) are prepared by four successive reactions, which are MNPs preparation, silica-coating, surface modification with amino group, and conjugation with bio-molecule, respectively. The crystal structure and morphology of intermediate products are characterized by XRD, TEM and AFM. Qualitative and quantitative assays for amino group on the MNPs’ surface are made by FTIR and Organic Element Assay. Ultraviolet–visible absorption spectrum can indirectly illustrate the quantity of bio-molecule conjugated with MNPs. In addition, specific combination and nonspecific combination of immune MNPs are measured by commercial RIA box. The results show that the size of MNPs prepared is 10 ± 5 nm, and silica-coated MNPs with spinel structure have quasi-spherical morphology. Infrared absorption bands of –NH2 are appeared around 3380–3200 cm−1 and 1650–1510 cm−1, and the amino group content is 0.5 μmol –NH2 per mg MNPs. The specific immune combination of immune MNPs is up to 75%, and nonspecific combination is under 5%.  相似文献   

3.
The formation of amyloid aggregates by association of peptides into ordered structures is hallmark of certain neurodegenerative disorders. Exploring the effect of specific nanoparticles on the formation of amyloid fibrils may contribute toward a mechanistic understanding of the aggregation processes, leading to design nanoparticles that modulate the formation of toxic amyloid plaques. Uniform maghemite (γ-Fe2O3) magnetic nanoparticles, containing fluorescein covalently encapsulated within (F-γ-Fe2O3), were prepared. These F-γ-Fe2O3 nanoparticles of 14.0 ± 4.0 nm were then coated with human serum albumin (HSA) via a precipitation process. Covalent conjugation of the spacer arm succinimidyl polyethylene glycol succinimidyl ester (NHS–PEG–NHS) to the F-γ-Fe2O3~HSA nanoparticles was then accomplished by interacting the primary amine groups of the HSA coating with excess NHS–PEG–NHS molecules. Covalent conjugation of the peptides amyloid-β 40 (Aβ40) or Leu-Pro-Phe-Phe-Asp (LPFFD) onto the surface of the former fluorescent nanoparticles was then performed, by interacting the terminal activated NHS groups of the PEG derivatized F-γ-Fe2O3~HSA nanoparticles with primary amino groups of the peptides. Kinetics of the Aβ40 fibrillation process in the absence and presence of varying concentrations of the Aβ40 or LPFFD conjugated nanoparticles were also elucidated. The non-peptide conjugated fluorescent nanoparticles do not affect the Aβ40 fibrillation process significantly. However, the Aβ40-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–Aβ40) accelerate the fibrillation process while the LPFFD-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–LPFFD) inhibit it. By applying MRI and fluorescence imaging techniques simultaneously these bioactive fluorescent magnetic iron oxide nanoparticles can be used as an efficient tool to study and control the Aβ40 amyloid fibril formation process.  相似文献   

4.
In-situ functionalization of gold nanoparticles with fluorophore-tagged oligonucleotides is studied by comparing femtosecond laser ablation in stationary liquid and in biomolecule flow. Femtosecond laser pulses induce significant degradation to sensitive biomolecules when ablating gold in a stationary solution of oligonucleotides. Contrary, in-situ conjugation of nanoparticles in biomolecule flow considerably reduces the degree of degradation studied by gel electrophoresis and UV–Vis spectrometry. Ablating gold with 100 μJ femtosecond laser pulses DNA sequence does not degrade, while the degree of fluorophore tag degradation was 84% in stationary solution compared to 5% for 1 mL/min liquid flow. It is concluded that femtosecond laser-induced degradation of biomolecules is triggered by absorption of nanoparticle conjugates suspended in the colloid and not by ablation of the target. Quenching of nanoparticle size appears from 0.5 μM biomolecule concentration for 0.3 μg/s nanoparticle productivity indicating the successful surface functionalization. Finally, increasing the liquid flow rate from stationary to 450 mL/min enhances nanoparticle productivity from 0.2 μg/s to 1.5 μg/s, as increasing liquid flow allows removal of light absorbing nanoparticles from the ablation zone, avoiding attenuation of subsequent laser photons.  相似文献   

5.
The adhesion of gold nanoparticles either electrostatically or chemically attached to a substrate has been probed using AFM operating in force spectroscopy mode. A monolayer of –NH2 terminated 3-aminopropyltriethoxysilane or –SH terminated 3-mercaptopropyltrimethoxysilane was self-assembled onto a p-type silicon (100) substrate. Each silane monolayer provided the point of attachment for citrate stabilised gold colloid nanoparticles. In the case of the –NH2 terminated layer gold colloid assembly was driven by the electrostatic attraction between the negative, citrate-capped, gold nanoparticles and a partially protonated amine layer. In the case of the –SH terminated regions, well-known gold–thiol chemistry was used to chemically attach the nanoparticles. An atomic force microscope tip was chemically modified with 3-mercaptopropyltrimethoxysilane and scanned across each surface, where the cantilever deflection was measured at each x, y pixel of the image to create an array of adhesion force curves. This has allowed an unprecedented nanoscale characterisation of the adhesion force central to two common surface attachment methods of gold colloid nanoparticles, providing useful insights into the stability of nanoscale constructs.  相似文献   

6.
A continuous aerosol process has been studied for producing nanoparticles of oxides that were decorated with smaller metallic nanoparticles and are free of organic stabilizers. To produce the oxide carrier nanoparticles, an aerosol of 3–6 μm oxide particles was ablated using a pulsed excimer laser. The resulting oxide nanoparticle aerosol was then mixed with 1.5–2.0 μm metallic particles and this mixed aerosol was exposed to the laser for a second time. The metallic micron-sized particles were ablated during this second exposure, and the resulting nanoparticles deposited on the surface of the oxide nanoparticles producing an aerosol of 10–60 nm oxide nanoparticles that were decorated with smaller 1–5 nm metallic nanoparticles. The metal and oxide nanoparticle sizes were varied by changing the laser fluence and gas type in the aerosol. The flexibility of this approach was demonstrated by producing metal-decorated oxide nanoparticles using two oxides, SiO2 and TiO2, and two metals, Au and Ag.  相似文献   

7.
We report a simple and novel method for surface biofunctionalization onto recently reported Ni80Fe20 permalloy nanoparticles (~71 nm) and the immobilization of a model protein, IgG from human serum. The strategy of protein immobilization involved attachment of histidine-tagged streptavidin to the Ni80Fe20 nanoparticles via a non-covalent ligand binding followed by biotinylated human IgG binding on the nanoparticle surface using the specific high affinity avidin–biotin interaction. The biofunctionalization of Ni80Fe20 permalloy nanoparticles was confirmed by Fourier Transform InfraRed (FTIR) spectroscopy and protein denaturing gel electrophoresis (lithium dodecyl sulfate-polyacrylamide gel electrophoresis, LDS-PAGE). This protocol for surface functionalization of the novel nanometer-sized Ni80Fe20 permalloy particles with biological molecules could open diverse applications in disease diagnostics and drug delivery.  相似文献   

8.
Laser ablation of a silver (Ag) and/or gold (Au) target was performed in liquid ammonia (l-NH3) at 233 K using nanosecond laser pulses of 1064, 532 and 355 nm wavelengths. An “in situ” monitoring of the ablation process by UV/vis/NIR spectroscopy has shown the evolution of the surface plasmon extinction band of silver or gold nanoparticles and thus confirmed their formation. While sols of Au nanoparticles in l-NH3 are quite stable in air, those of Ag nanoparticles undergo oxidation to Ag(I) complexes with NH3 ligands. On the other hand, formation of solvated electrons, namely of the (e)NH3 solvates, has not been unequivocally confirmed under the conditions of our laser ablation/nanoparticle fragmentation experiment, since only very weak vis/NIR spectral features of these solvates were observed with a low reproducibility. Reference experiments have shown that the well-known chemical production of these solvates is hindered by the presence of Ag and Au plates. Ag and Au targets can thus possibly act as electron scavengers in our ablation experiments.  相似文献   

9.
The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti–6Al–4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank’s solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50–100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti–6Al–4V surface, serving to improve the bioimplant corrosion resistance.  相似文献   

10.
In this paper, data concerning the effect of pH on the morphology of Ag–TiO2 nanocomposite during photodeposition of Ag on TiO2 nanoparticles is reported. TiO2 nanoparticles prepared by sol–gel method were coated with Ag by photodeposition from an aqueous solution of AgNO3 at various pH levels ranging from 1 to 10 in a titania sol, under UV light. The as-prepared nanocomposite particles were characterized by UV–vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and N2 adsorption/desorption method at liquid nitrogen temperature (−196 °C) from Brunauer–Emmett–Teller (BET) measurements. It is shown that at a Ag loading of 1.25 wt.% on TiO2, a high-surface area nanocomposite morphology corresponding to an average of one Ag nanoparticle per titania nanoparticle was achieved. The diameter of the titania crystallites/particles were in the range of 10–20 nm while the size of Ag particles attached to the larger titania particles were 3 ± 1 nm as deduced from crystallite size by XRD and particle size by TEM. Ag recovery by photo harvesting from the solution was nearly 100%. TEM micrographs revealed that Ag-coated TiO2 nanoparticles showed a sharp increase in the degree of agglomeration for nanocomposites prepared at basic pH values, with a corresponding sharp decrease in BET surface area especially at pH > 9. The BET surface area of the Ag–TiO2 nanoparticles was nearly constant at around a value of 140 m2 g−1 at all pH from 1–8 with an anomalous maximum of 164 m2 g−1 when prepared from a sol at pH of 4, and a sharp decrease to 78 m2 g−1 at pH of 10.  相似文献   

11.
Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni–NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2–CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (–COOH) functional groups were added to the SiO2–CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα–Bis(carboxymethyl)-l-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2–CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.  相似文献   

12.
The synthesis of highly monodispersed, homogeneous and stable luminescent silica nanoparticles, synthesized using a process based on the Stöber method is reported here. These particles have been functionalised with the ruthenium and europium complexes: bis (2,2??-bipyridine)-(5-aminophenanthroline) Ru bis (hexafluorophosphate), abbreviated to (Ru(bpy)2(phen-5-NH2)(PF6)), and tris (dibenzoylmethane)-mono (5-aminophenanthroline) europium(III), abbreviated to (Eu:TDMAP). Both dyes have a free amino group available, facilitating the covalent conjugation of the dyes inside the silica matrix. Due to the covalent bond between the dyes and the silica, no dye leaching or nanoparticle diameter modification was observed. The generic and versatile nature of the synthesis process was demonstrated via the synthesis of both europium and ruthenium-functionalised nanoparticles. Following this, the main emphasis of the study was the characterisation of the luminescence of the ruthenium-functionalised silica nanoparticles, in particular, as a function of surface carboxyl or amino group functionalisation. It was demonstrated that the luminescence of the ruthenium dye is highly affected by the ionic environment at the surface of the nanoparticle, and that these effects can be counteracted by encapsulating the ruthenium-functionalised nanoparticles in a plain 15 nm silica layer. Moreover, the ruthenium-functionalised silica nanoparticles showed high relative brightness compared to the free dye in solution and efficient functionalisation with amino or carboxyl groups. Due to their ease of fabrication and attractive characteristics, the ruthenium-functionalised silica nanoparticles described here have the potential to be highly desirable fluorescent labels, particularly, for biological applications.  相似文献   

13.
Silver nanoparticles (AgNPs) have been deposited on silicon and glass surfaces via a supercritical carbon dioxide (sc-CO2) synthesis route for application in surface-enhanced Raman spectroscopy (SERS). Arrhenius plots revealed that nucleation and growth processes in this system depend on both temperature and surface chemistry. Results also demonstrated that temperature and surface chemistry could be varied to control nanoparticle properties, such as the mean nanoparticle size, density, and surface coverage, providing two useful variables for manipulating the properties of AgNPs deposited on surfaces in this system. These data also provide scientific insight into the underlying mechanisms governing heterogeneous AgNP deposition on a substrate in a sc-CO2 system in addition to engineering insight into the variables that can be used to manipulate AgNP characteristics. The mean particle size could be tuned over the range 20–200 nm, the interparticle distance could be tuned over the range 70 nm–1 μm, and the surface coverage could be tuned over the range 0.035–0.58. Products were analyzed by scanning electron microscopy with image analysis, transmission electron microscopy, X-ray diffraction, and SERS. The silver nanoparticle-coated substrates were successfully applied in SERS, detecting the model analyte Rhodamine 6G at a concentration of 1 μM, a three orders of magnitude improvement over SERS surfaces previously fabricated in sc-CO2 systems. Such surfaces can find use in trace concentration analyte detection in biomedical, chemical, and environmental applications.  相似文献   

14.
By encapsulating zirconium phosphate (ZrP) nanoparticles into three macroporous polystyrene resins with various surface groups, i.e., −CH2Cl, −SO3 , and −CH2N+(CH3)3 three nanocomposite adsorbents (denoted as ZrP–Cl, ZrP–S, and ZrP–N) were fabricated, respectively for lead removal from water. Effect of the functional groups on nano-ZrP dispersion and effect of ZrP immobilization on the mechanical strength of the resulting nanocomposites were investigated. The presence of the charged functional groups (−SO3 and −CH2N+(CH3)3) are more favorable than the neutral −CH2Cl group to improve nano-ZrP dispersion (i.e., to achieve smaller ZrP nanoparticles). ZrP–N and ZrP–S had higher capacity than ZrP–Cl for lead removal. As compared to ZrP–N, ZrP–S exhibits higher preference toward lead ion at high calcium levels as a result of the potential Donnan membrane effect. On the other hand, nano-ZrP immobilization would simultaneously reinforce both the compressive strength and the wear performance of the resulting nanocomposites with the ZrP loadings up to 5 wt%. The results reported herein would shed some light on the generation of environmental nanocomposites with high capacity and excellent mechanical strength.  相似文献   

15.
We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles?? surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500???g/cm3 in 24?h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.  相似文献   

16.
Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6–12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50–60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50–60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50–90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.  相似文献   

17.
Gelatin-stabilized gold nanoparticles (AuNPs-gelatin) with controlled particle size were synthesized with simple variation of concentration of gelatin by reducing in situ tetrachloroauric acid with sodium citrate. The nanoparticles showed excellent colloidal stability. Transmission electron microscopy (TEM) revealed the formation of well-dispersed gold nanoparticles (AuNPs) with different sizes. The methodology produces particles 10–15 nm in size depending on the concentration of gelatin used. The measured AuNPs are 10, 11, 12, 13, 14, and 15 nm for AuNPs-gelatin 1, 0.5, 0.25, 0.1 and 0.05%, and pure AuNPs, respectively. The AuNPs-gelatin exhibit size-dependent localized surface plasmon resonance behavior as measured by UV–visible spectroscopy. UV–vis spectroscopy and TEM results suggest that higher concentration of gelatin favor smaller particle size and vice versa. FTIR spectroscopy analysis of AuNPs-gelatin revealed the amino bands and carboxyl peak of gelatin. The crystalline nature of AuNPs was investigated by X-ray diffraction.  相似文献   

18.
The aim of this study was to develop a simple, cheap, and rapid method for purification of His-tag recombinant proteins with high yields. The new immobilized metal ion affinity adsorbent containing superparamagnetic nanoparticles and hydrophilic resins are proposed here to improve the purification of His-tagged recombinant proteins. In this report, we have described the preparation of nanosized superparamagnetic nanoparticles (Fe3O4) which were prepared by chemical precipitation method followed by surface modification using phosphonomethyl iminodiacetic acid. The stable surface functionalized nanoparticles were further linked with Ni2+ for purification of 6× His-tagged proteins. The phosphonate group of the N-phosphonomethyl iminodiacetic acid ligand acts as a surface anchoring agent on magnetite nanoparticles and the remaining free –COOH groups outside for binding with Ni2+ ions. The nanoparticles were approximately 6–8 nm in size and were stable and had negligible non-specific binding for protein. The proteins were purified within 1 h and observed on sodium dodecyl sulfate-polyacrylamide electrophoresis gel.  相似文献   

19.
In this article, the synthesis of two amphiphilic polyaspartamide copolymers, useful to obtain polymeric nanoparticles without using surfactants or stabilizing agents, is described. These copolymers were obtained starting from α,β-poly-(N-2-hydroxyethyl)-dl-aspartamide (PHEA) by following a novel synthetic strategy. In particular, PHEA and its pegylated derivative (PHEA-PEG2000) were functionalized with poly(lactic acid) (PLA) through 1,1′-carbonyldiimidazole (CDI) activation to obtain PHEA–PLA and PHEA-PEG2000–PLA graft copolymers, respectively. These copolymers were properly purified and characterized by 1H-NMR, FT-IR, and Size Exclusion Chromatography (SEC) analyses, which confirmed that derivatization reactions occurred. Nanoparticles were obtained from PHEA–PLA and PHEA-PEG2000–PLA graft copolymers by using the high pressure homogenization-solvent evaporation method, avoiding the use of surfactants or stabilizing agents. Polymeric nanoparticles were characterized by dimensional analysis, before and after freeze-drying process, and Scanning Electron Microscopy (SEM). Zeta potential measurements and X-ray Photoelectron Spectroscopy (XPS) analysis demonstrated the presence of PEG and/or PHEA onto the PHEA-PEG2000–PLA and PHEA–PLA nanoparticle surface, respectively.  相似文献   

20.
A biocompatible polymer has been used to functionalize 45–50 nm diameter γ-alumina nanoparticles. Because the target was to use these systems in real applications, polyvinylpirrolidone (PVP) was chosen due to the characteristics of non-toxicity, biocompatibility, and feasibility of this polymer to form complexes with many cations and chemical species. This approach allows the use of these materials in medicine and food, textile, or pharmaceutical industry. The functionalization process required a previous attachment of an active group on the surface of the nanoparticles. Subsequently, a polymer chain was generated in situ, using vinyltrimethoxysilane (VTMS) and 1-vinyl-2-pyrrolidone (VP) as reactives. The morphology and topology of the nanocompound has been characterized in aqueous suspensions, attending to possible applications in this medium. The results obtained from the different techniques show that the polymer chain was successfully grafted to the nanoparticle surface, and allow an estimation of the size of the modified particle. Their electrical and conformational behavior have also been studied in different aqueous chemical environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号