首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ring-opening metathesis polymerization was used to generate an ABC triblock copolymer, containing complementary diamidopyridine (DAP) and thymine (THY) outer blocks, which assembles into spherical aggregates held together by DAP-THY noncovalent interactions. Addition of THY-containing small guest molecules results in complete opening and deaggregation of the block copolymer micelle. This molecular recognition and macroscopic response shows high selectivity to the guest structure, and tolerates only a small amount of conformational mobility in the THY guest. On the other hand, addition of a small DAP-containing guest does not break the aggregates, but instead, results in new micelles which show a different selectivity profile from the parent morphology. We have examined the effect of a number of structural features in the block copolymers, on both the extent and selectivity of their macroscopic response to guests (that is, opening of the micelle). This study has resulted in a set of structural guidelines, which help in the design of effective molecule-responsive micelles for applications in selective drug delivery, sensing, and surface patterning.  相似文献   

2.
3.
Cell membranes are essential barriers in Nature. To understand their properties and functions and to develop desirable applications, a simple and elegant approach is to study membranes that mimic the cell membrane. Lipid bilayers represent simple models that are physiologically representative when in the form of mixtures of various lipids, but they are not adequately stable even when covered with amphipathic proteins or when combined with polymers, thus preventing technological applications. This makes necessary the design of completely synthetic membranes. In this respect, amphiphilic copolymers that self‐assemble under dilute aqueous conditions and generate supramolecular polymer vesicles or films are ideal candidates for synthetic membranes. Their versatility in terms of chemistry and properties (permeability, mechanical stability, thickness), if appropriately designed, enable the insertion of biological molecules, such as membrane proteins and biopores, or the attachment of biomolecules at their surfaces. Here, we present the domain of synthetic membranes based on amphiphilic copolymers beginning with their generation and up to their applications in medicine, the food industry, and technology. Even though significant progress has been made in combining them with membrane proteins, open questions remain with respect to desired properties that could accommodate biological molecules and support further development of the field, from both the point of view of fundamental understanding and of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
5.
6.
A computational procedure is presented to quantify the order achieved in assembled block copolymer films when no disruptive defects are present (i.e., dislocations or disclinations). Both simulated and real systems were used to show that sub‐nm variation in the domain position, as well as the corresponding reciprocal lattice vectors, can reduce the accuracy in the quantification of the order of the system. The computational procedure in this work was based on fitting to the measured spatial location of the domain centroids, and incorporated a tolerance factor to account for domain position variation. The procedure was used to analyze the translational and orientational order parameters of block copolymer films assembled on a chemical pattern as well as their corresponding autocorrelation functions. The procedure was applied to a patterned substrate during three stages of a template forming process: an e‐beamed patterned photoresist, the domains of a block copolymer directed to assemble on this pattern, and the underlying structure after lift‐off. Use of the procedure demonstrated that the order of the block copolymer film could be retained in subsequent processing of the underlying template. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

7.
Novel pH sensitive biodegradable block copolymers (MPEG-PDLLA-OSM) composed of mono-methoxy poly(ethylene glycol) (MPEG), poly (D,L-lactide) (PDLLA) and sulfamethazine oligomer (OSM) were synthesized via ring-opening polymerization and a dicyclohexyl carboimide (DCC) coupling reaction. These copolymers had a relatively low critical micelle concentration (CMC) due to the strong hydrophobic properties of non-ionized OSM at pH 7.0. Also, the pH sensitive block copolymers showed the micelle-unimer transition due to the ionization-non-ionization of OSM in the pH range (pH 7.2-8.4) above the CMC. Due to the pH sensitive properties of the block copolymer, the hydrophobic drug paclitaxel (PTX) was incorporated into a pH sensitive block copolymer micelle by the pH induced micellization method, without using an organic solvent. The block copolymer micelle prepared by pH induced micellization showed a relatively high PTX loading efficiency, and good stability for 2 d at 37 degrees C. Furthermore, the PTX loaded micelle showed a sustained release of PTX with a small burst in vitro over 2 d. The present results suggest that the pH induced micellization method due to the micelle-unimer transition of the pH sensitive block copolymer would be a novel and valuable drug incorporation tool for hydrophobic and protein drugs, since no organic solvent is involved in the formulation.  相似文献   

8.
We present an improved algorithm of the self‐consistent mean‐field implementation that has been recently proposed for the calculation of block copolymer self‐assembly. Without requiring prior knowledge of the symmetry of the mesophase segregation, the algorithm is numerically stable and significantly faster than previously proposed methods. These advantages provide a valuable tool for combinatorial screening of novel stable and metastable structural phases of block copolymers. We apply the method and demonstrate complex mesophases in linear, asymmetric triblock copolymer melts. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1777–1783, 2002  相似文献   

9.
Preparation of functional domains with a spacing of 10 nm is a benchmark set to fabricate next‐generation electronic devices. Organic–inorganic block copolymers form well‐ordered microphase separations with very small domain sizes. The design and preparation of a novel block copolymer consisting of syndiotactic polymethyl methacrylate (st‐PMMA) and polyhedral oligomeric silsesquioxane (POSS)‐functionalized polymethacrylate, designated as st‐PMMA‐b‐PMAPOSS, which can recognize functional molecules, are reported. The st‐PMMA segments form a helical structure and encapsulate C60 in the helical nanocavity, leading to the formation of an inclusion complex. Although the ordering of the domains is not high, C60 domains that are in a quasi‐equilibrium state, with about 10‐nm domain spacings, are generated using st‐PMMA‐b‐PMAPOSS that can recognize functional molecules. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2181–2189  相似文献   

10.
Block copolymer vesicles can be prepared in solution from a variety of different amphiphilic systems. Polystyrene‐block‐poly(acrylic acid), polystyrene‐block‐poly(ethylene oxide), and many other block copolymer systems can produce vesicles of a wide range of sizes; those in the range of 100–1000 nm have been explored extensively. Different factors, such as the absolute and relative block lengths, the presence of additives (ions, homopolymers, and surfactants), the water content in the solvent mixture, the nature and composition of the solvent, the temperature, and the polydispersity of the hydrophilic block, provide control over the types of vesicles produced. Their high stability, resistance to many external stimuli, and ability to package both hydrophilic and hydrophobic compounds make them excellent candidates for use in the medical, pharmaceutical, and environmental fields. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 923–938, 2004  相似文献   

11.
An amphiphilic block copolymer of acrylamide and butadiene was synthesized by the polymerization of acrylamide in the presence of the crosslinker N,N′‐methylene bisacrylamide initiated by a hydroxyl‐terminated polybutadiene/V(V) macroredox initiator. The product had good film‐forming ability. It was characterized by IR and NMR spectroscopy, viscosity, swelling, and microhardness measurements, scanning electron micrography, and differential scanning calorimetry. A good film was obtained from the block copolymer with a greater proportion of butadiene; it had greater permeability for nonpolar solvents, and it was poorly permeable to water and other polar solvents. The film swelled in polar and nonpolar solvents and had almost the same capacity for the loading and release of hydrophilic and hydrophobic dyes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3290–3303, 2006  相似文献   

12.
Statistical and amphiphilic block copolymers bearing cinnamoyl groups were prepared by ring opening metathesis polymerization (ROMP). The UV‐induced [2 + 2] cycloaddition reaction of polymer bound cinnamic acid groups was studied in polymer thin films as well as in block copolymer micelles. In both cases, exposure to UV‐light for 10 min led to a crosslinking conversion of about 60%, as determined by FT‐IR spectroscopy and UV–vis absorption measurements. Time based IR‐spectroscopy revealed a maximum conversion of 78% reached after an irradiation time of about 16 min. For micelles obtained from polymers bearing 5 mol % or more cinnamoyl groups, the crosslinking reaction proceeded smoothly, yielding in crosslinked particles which were stable in a non‐selective solvent (CHCl3). Diameters determined by dynamic light scattering in the selective solvent (MeOH) were similar for both, non‐crosslinked and crosslinked micelles, whereas diameters of crosslinked micelles in the non‐selective solvent (CHCl3) were significantly larger compared to MeOH samples. This strategy of direct self assembly of block‐copolymers in a selective solvent followed by “clean” crosslinking, without the need for additional crosslinking reagents or crosslinking initiators, provides a straight forward approach toward ROMP‐based polymeric nano‐particles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2402–2413, 2008  相似文献   

13.
Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS‐b‐PAA and PS‐b‐P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.‐%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution.

  相似文献   


14.
15.
16.
17.
Block copolymer directed self‐assembly (BCP) with chemical epitaxy is a promising lithographic solution for patterning features with critical dimensions under 20 nm. In this work, we study the extent to which lamellae‐forming poly(styrene‐b‐methyl methacrylate) can be directed with chemical contrast patterns when the pitch of the block copolymer is slightly compressed or stretched compared to the equilibrium pitch observed in unpatterned films. Critical dimension small angle X‐ray scattering complemented with SEM analysis was used to quantify the shape and roughness of the line/space features. It was found that the BCP was more lenient to pitch compression than to pitch stretching, tolerating at least 4.9% pitch compression, but only 2.5% pitch stretching before disrupting into dislocation or disclination defects. The more tolerant range of pitch compression is explained by considering the change in free energy with template mismatch, which suggests a larger penalty for pitch stretching than compressing. Additionally, the effect of width mismatch between chemical contrast pattern and BCP is considered for two different pattern transfer techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 595–603  相似文献   

18.
Composite ultrafiltration membranes were fabricated by coating a thin film of self‐assembling polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers and poly(acrylic acid) homopolymers on top of a support membrane. Block copolymers self‐assembled into a nanostructure where the minority component forms cylinders, whereas homopolymers reside in the core of the cylinders. Selective removal of the homopolymers led to the formation of pores. The morphology of the polymer layer was controlled by varying the content of homopolymers or polymer concentration of the coating solution, which led to membranes with different molecular weight cutoffs (MWCOs) and permeabilities. Uniform pores were obtained using low homopolymer contents, whereas high homopolymer contents caused macrophase separation and resulted in large polydisperse pores or craters at the surface. The thickness of the block copolymer film also influenced the structure and performance of the membranes, where a thicker film results in a strong decrease in permeability but a lower MWCO. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1546–1558  相似文献   

19.
20.
We report manipulation of polymer nano‐objects by changing solvents through chemically crosslinking the spherical micelles of poly(3‐(triethoxysilyl)propyl methacrylate)‐block‐polystyrene‐block‐poly(2‐vinylpyridine) (PTEPM‐b‐PS‐b‐P2VP). In methanol, which is a common solvent of PTEPM and P2VP but poor of PS, PTEPM‐b‐PS‐b‐P2VP forms micelles with a PS core. When changing the medium into acidic water, the PTEPM segments further collapse and gelate to form a crosslinked shell outside of the PS core. When the particles are re‐dispersed into tetrahydrofuran (THF), the PS segments are extracted out, producing uniform small cavity of few nanometers in each particle. Thus one sample can be used to generate well‐defined nano‐objects with different appearance by solvent manipulation. The particle structure development has been characterized by transmission electron microscope (TEM), DLS, and 1H NMR. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号