首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method is described for assembling gold nanorods into one-, two-, and three-dimensional superstructures. The addition of dimercaptosuccinic acid (DMSA) into the nanorod solution was found to induce self-assembly of the latter to one-dimensional "tapelike", two-dimensional "sheetlike" and three-dimensional "superlattice-like" structures depending on the DMSA concentration. The assembly was found to follow a smectic structure, where the nanorod long axes are parallel to each other. The rods are spaced 8.5 +/- 0.3 nm apart in the resulting structures, which extend over several micrometers in length. Organizations perpendicular to the grid were also found. The nanorod tapes were found to bend, and they form circular assemblies as well. The assembly and morphology of the nanorod structures were characterized by transmission electron microscopy and UV-vis spectroscopy. The effect of the DMSA concentration as well as the pH of the medium was also studied. On the basis of several control experiments utilizing similar molecules, charge neutralization of the nanorods by the carboxylic group of DMSA was found to be the principal reason for such an assembly, while the mercapto groups render additional stability to its structure. A mechanistic model of the assembly is proposed. This type of assembly would plausibly function as a plasmonic waveguide in potential nanodevices.  相似文献   

2.
Block copolymers composed of acrylic acid and methyl methacrylate with three topologies of double linear blocks, poly(acrylic acid) (PAA) linear block/poly(methyl methacrylate) (PMMA) G1‐dendron and PAA linear block/PMMA G2‐dendron have been prepared by the combination of atom transfer radical polymerization and azide–alkyne click reaction. Proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography have been adopted thoroughly to identify the chemical structure of those block copolymers with expected topologies. The self‐assembly of those block copolymers in the selective solvent has been performed through two mixing routes of gentle and abrupt variation in solvent selectivity, and the morphology of the obtained self‐assemblies/aggregates was observed by transmission electron microscopy. Because the abrupt variation route altered sharply the solvent quality during the mixing, the intermolecular association of polymer chains resulted in the smaller self‐assemblies but the further growth of smaller self‐assemblies was not observed. On the contrary, the gentle variation route changed gradually the solvent quality during the mixing, favoring not only the intermolecular association but also the further growth of self‐assemblies to result in larger aggregates. The final morphology of those assemblies/aggregates also exhibited the dependence of PMMA dendron generation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1446–1456  相似文献   

3.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

4.
We report here the noncovalent synthesis of thermosensitive dendrimers. Short oligoguanosine strands were linked to the focal point of a dendron by using "click chemistry", and quadruplex formation was used to drive the self-assembly process in the presence of metal ions. The dynamic nature of these noncovalent assemblies can be exploited to create combinatorial libraries of dendrimers as demonstrated by the co-assembly of two components. These supramolecular dendrimers showed thermoresponsive behavior that can be tuned by varying the templating cations or the number of guanines in the oligonucleotide strand.  相似文献   

5.
We report a simple process to generate iron oxide coated gold nanorods. Gold nanorods, synthesized by our three-step seed mediated protocol, were coated with a layer of polymer, poly(sodium 4-styrenesulfonate). The negatively charged polymer on the nanorod surface electrostatically attracted a mixture of aqueous iron(II) and iron(III) ions. Base-mediated coprecipitation of iron salts was used to form uniform coatings of iron oxide nanoparticles onto the surface of gold nanorods. The magnetic properties were studied using a superconducting quantum interference device (SQUID) magnetometer, which indicated superparamagnetic behavior of the composites. These iron oxide coated gold nanorods were studied for macroscopic magnetic manipulation and were found to be weakly magnetic. For comparison, premade iron oxide nanoparticles, attached to gold nanorods by electrostatic interactions, were also studied. Although control over uniform coating of the nanorods was difficult to achieve, magnetic manipulation was improved in the latter case. The products of both synthetic methods were monitored by UV-vis spectroscopy, zeta potential measurements, and transmission electron microscopy. X-ray photoelectron spectroscopy was used to determine the oxidation state of iron in the gold nanorod-iron oxide composites, which is consistent with Fe2O3 rather than Fe3O4. The simple method of iron oxide coating is general and applicable to different nanoparticles, and it enables magnetic field-assisted ordering of assemblies of nanoparticles for different applications.  相似文献   

6.
Herein, the design, synthesis, and characterization of an unprecedented copolymer consisting of alternating linear and dendritic segments is described. First, a 4th‐generation Hawker‐type dendron with two azide groups was synthesized, followed by a step‐growth azide‐alkyne “click” reaction between the 4th‐generation diazido dendron and poly(ethylene glycol) diacetylene to create the target polymers. Unequal reactivity of the functional groups was observed in the step‐growth polymerization. The resulting copolymers, with alternating hydrophilic linear and hydrophobic dendritic segments, can spontaneously associate into a unique type of microphase‐segregated nanorods in water.  相似文献   

7.
Poly(ethylene oxide)-covered CdSe nanorods were prepared and assembled in diblock copolymer templates by floating the block copolymer templates onto aqueous nanorod solutions. The assembly was enabled by consideration of the surface ligand coverage of the nanorods. Alkane-covered CdSe nanorods prepared by state-of-the-art techniques are not compatible with this assembly process. However, poly(ethylene oxide) (PEO)-functionalized CdSe nanorods were successfully used to assemble the nanorods into the channels and pores of diblock copolymer templates. Other water-dispersible CdSe nanorods, such as those covered with 11-mercaptoundecanoic acid (MUA), did not give the desired assemblies. These results are understood by considering the surface energies of the PEO-covered CdSe nanorods in this interfacial assembly process.  相似文献   

8.
The self-assembly of surfactant-protected gold nanorods (aspect ratio 3.3 +/- 0.3, 20.6 +/- 5.5 nm width, and 67.5 +/- 9.0 nm length) into ordered structures using adipic acid is presented. As made, the gold nanorods are coated with cationic surfactant, which gives them a net positive charge in aqueous solution. The pH-dependent assembly is directed by electrostatic interactions between the positively charged nanorods and negatively charged, deprotonated adipic acid. Absorption spectra and light scattering measurements of these nanorods suggest that aggregation is initiated in solution in the presence of adipic acid at pH 7-8, but not at pH 3, to form small assemblies of nanorods. Zeta potential measurements show that the assembly is significantly less positively charged in the presence of deprotonated adipic acid than when adipic acid is fully protonated.  相似文献   

9.
We have investigated the most efficient way of preparing biocompatible gold nanorods (GNR) used as tool for cancer imaging and therapy. The surface of cetyltrimethylammonium bromide-stabilized gold nanorods (GNR-CTAB) was functionalized with various thio-polyethylene glycols of the general formula HS-PEGmX (m=356-10,000; X=-OMe, -NH(2)). The influence of several parameters such as PEG chain length, reaction conditions and purification method on long-term stability, morphology and optical properties of the produced GNR-S-PEGmX was studied, demonstrating the existence of a threshold HS-PEGmX chain length (with molecular weight m≥2000) for efficient steric stabilization of GNR. Several purification techniques were compared: dialysis, centrifugation and a rarely used technique in this field, size exclusion chromatography. While a very weak efficiency of dialysis was evidenced, both centrifugation and size exclusion chromatography were found to provide pure GNRs, though the latter method yielded nanoparticles with a significantly higher stability. Finally, the long-term stability of the produced GNRs was investigated in various media: water, PBS buffer and serum.  相似文献   

10.
Fabrication and self-assembly of hydrophobic gold nanorods   总被引:1,自引:0,他引:1  
Hydrophobic gold nanorods were fabricated from hydrophilic gold nanorods coated with hexadecyltrimethylammonium bromide by treating with mercaptopropyltrimethoxysilane (MPS) and subsequently octadecyltrimethoxysilane (ODS). The fabrication of the hydrophobic shell went through the process of (1) binding MPS onto the nanorods, (2) hydrolysis of methoxysilanes, and (3) immobilization of ODS by dehydration condensation. The 2- or 3-D ordered structures of hydrophobic nanorods were self-assembled by the evaporation of solvent on a substrate. The aspects of 2-D assemblies were dependent on the concentration of the nanorods, as was seen in transmission electron microscopic images. At a low concentration, the nanorods assembled parallel to the substrate, whereas they stood on the substrate at a high concentration. On the other hand, in a solid of the gold nanorods, the formation of the 3-D assembly was confirmed by small-angle X-ray scattering. The assembly consisted of hexagonal arrays of the gold nanorods and their lamellar accumulation.  相似文献   

11.
The application of surfactants as reverse micelles or microemulsions for the synthesis and self-assembly of nanoscale structures is one of the most widely adopted methods in nanotechnology. These synthesized nanostructure assemblies sometimes have an ordered arrangement. The aim of this research was to take advantage of these latest developments in the area of nanotechnology to mimic the natural biomineralization process to create the hardest tissue in the human body, dental enamel. This is the outermost layer of the teeth and consists of enamel prisms, highly organized micro-architectural units of nanorod-like calcium hydroxyapatite (HA) crystals arranged roughly parallel to each other. In particular, we have synthesized and modified the hydroxyapatite nanorods surface with monolayers of surfactants to create specific surface characteristics which will allow the nanorods to self-assemble into an enamel prism-like structure at a water/air interface. The size of the synthetic hydroxyapatite nanorods can be controlled and we have synthesized nanorods similar in size to both human and rat enamel. The prepared nanorod assemblies were examined using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The specific Langmuir-Blodgett films were shown to be comprised of enamel prism-like nanorod assemblies with a Ca/P ratio between 1.6 and 1.7.  相似文献   

12.
Au nanoparticles encapsulated within polystyrene-block-poly(acrylic acid) (PS-b-PAA) micelles assemble into regular, one-dimensional arrays when they are exposed to solvent conditions that relax interfacial curvature in the micellar shell. Nanoparticle chaining was induced by adding salt, acid, or cationic carbodiimide to the suspension of purified encapsulated Au nanoparticles (Au@PS-b-PAA). The resulting assemblies were characterized by scanning and transmission electron microscopies, by dark-field optical microscopy, and by visible absorption spectroscopy. The length of the chains was modulated by varying the concentration of additive. More importantly, the spacing between Au nanoparticles was dictated entirely by the shell thickness of the Au@PS-b-PAA starting material. Far-field polarization microspectroscopy demonstrated directional surface plasmon coupling in a straightened nanoparticle chain, which is a basic requirement for the use of these assemblies as plasmon waveguides.  相似文献   

13.
A cationic dendritic molecule that has alkyl chains has been synthesized and employed to encapsulate anionic polyoxometalates through electrostatic interactions. The prepared surfactant‐encapsulated polyoxometalate (SEP) complexes were used as building blocks to fabricate self‐assemblies in solution and the solid state. Monodispersion, lamellar, and columnar assemblies of SEP complexes have been characterized in detail. With increasing the number of peripheral cationic dendrons on inorganic clusters, the SEPs undergo changes from globular assemblies to monodispersions in solution and from lamellar assemblies to hexagonal columnar structures in the solid state, depending on the amounts of cationic dendrons in the complexes. The structural evolvement was simulated through consideration of the size and shape of the cationic dendron and polyanionic clusters, and the experimental results are in good agreement with the interpretation of the simulations. The present research demonstrates a new kind of dendritic complex and provides a route for controlling their assembling states by simply alternating the number of cationic dendrons in the complexes.  相似文献   

14.
We report on the interesting interfacial behavior of oligoethylene glycol or OEGylated linear dendron monolayers at the air-water interface as a function of (a) carbazole dendron generation, (b) the length of the OEG units, and (c) the surface pressure applied upon compression. Surface pressure-area isotherms, hysteresis studies, and isobaric creep measurement revealed a structure-property relationship consistent with the hydrophilic-lipophilic balance of a linear dendron with the OEG group serving as the surface anchor to the water subphase. AFM studies revealed that all the OEGylated carbazole dendrons self-assemble into spherical morphology at low surface pressures but form ribbonlike structures as the surface pressure is increased. This nanostructuring is primarily imparted by the increase in van der Waals forces with increasing amount of carbazole units per dendron generation on a hydrophilic mica surface. Further, electrochemical cross-linking of the carbazole molecules by cyclic voltammetery (CV) on doped Si wafer has enabled the formation of an LB film monolayer with a secondary level of organization in the monolayer imparted by the inter- and intramolecular cross-linking among the carbazole units. This study should provide a basis for monolayer film materials based on combining the LB technique and electrochemical cross-linking for nanostructuring superstructures at the air-water interface.  相似文献   

15.
A dendron ligand with two carboxylate anchoring groups at its focal point and eight hydroxyl groups as its terminal groups was found to efficiently convert as-synthesized CdSe/CdS core-shell nanocrystals in toluene to water-soluble dendron-ligand stabilized nanocrystals (dendron nanocrystals). The resulting dendron nanocrystals retained 60% of the photoluminescence value of the original CdSe/CdS core-shell nanocrystals in toluene and were significantly brighter than the similar dendron nanocrystals with thiolate (deprotonated thiol group) as the anchoring group which retained just 10% of the photoluminescence value of the original CdSe/CdS core-shell nanocrystals in toluene. The carboxylate-based dendron nanocrystals survived UV irradiation in air for at least 13 days, about 9 times better than the thiolate-based dendron nanocrystals (35 h) and similar to that of the thiolate-based dendron-box stabilized CdSe/CdS core-shell nanocrystals (box nanocrystals). Upon UV irradiation, the dendron nanocrystals became even 2 times brighter than the original CdSe/CdS core-shell nanocrystals in toluene, and the UV-brightened PL can retain the brightness for at least several months. These stable and bright dendron nanocrystals were soluble in various aqueous media, including all common biological buffer solutions tested, for at least 1.5 years. In addition to their superior performance, the synthetic chemistry of carboxylate dendron ligands and the corresponding dendron nanocrystals is relatively simple and with high yield.  相似文献   

16.
A series of hybrid Au-nanoparticle-dendrimer materials: nanoparticle-cored thiophene dendrimers (NCTDs) were synthesized, characterized, and investigated for their energy-transfer properties. These hybrid nanoparticles were obtained by the simultaneous and in situ reduction of gold(III) chloride and self-assembly of the thiol-containing thiophene dendritic ligands. The dendron ligands were radially attached to the gold nanoparticles and were analyzed by TEM, UV/Vis, (1)H NMR, and FTIR spectroscopies. The solution fluorescence of the attached thiophene dendrons are quenched progressively. Both alkyl-chain length and dendron size have significant influence on the energy-transfer efficiency, as well as on core sizes and size distribution of the Au nanoparticles. In spite of the phenomenon's dependence on nanoparticle size, the energy transfer generally follows the 1/d(2) distance dependence. Single NCTD nanoparticles were also adsorbed on highly ordered pyrolytic graphite (HOPG) and uniform aggregates were observed on mica flat substrates.  相似文献   

17.
Anisotropic nanostructures of nickel borate with controlled size and morphology have been synthesized by a precursor-mediated route. The nickel boron precursor has been synthesized using microemulsions using Tergitol as a surfactant. Microemulsions with various co-surfactants (1-butanol, 1-hexanol and 1-octanol) have been used to obtain uniform nanorods (dia 3-5 nm, length 25 nm) and nanospindles (dia 30 nm, length 400 nm). A higher chain length of the co-surfactant (octanol) leads to more uniform rods rather than spindles (butanol). These nanorods show antiferromagnetic behavior with the Néel temperature ranging from 44 to 47 K. Though there is no marked variation in N?el temperature, the magnetic moment increases drastically with the anisotropy of nanorods (thinner rods).  相似文献   

18.
Three kinds of head‐tail‐type block copolymers composed of polyamidoamine (PAMAM) dendron heads and poly(L ‐lysine) (PLL) tail blocks (PAMAM dendron‐PLL), having PAMAM dendrons with different generations (G2.5‐PLL, G3.5‐PLL and G4.5‐PLL) were synthesized. Some of the dendron heads were located at polyplex surface, and G2.5‐PLL and G3.5‐PLL could form small polyplexes (less than 150 nm in size). G2.5‐PLL and G3.5‐PLL polyplexes were taken up into the cells more effectively. PAMAM dendron‐PLL that had a larger dendron head could show a more‐effective buffering effect. The in vitro performance of the PAMAM dendron‐PLL polyplexes was controlled by the balance of cellular uptake and endosomal escape by a buffering effect.

  相似文献   


19.
A facile iterative synthesis of a phosphorus dendron with bisphenol A at the focal point by following the divergent procedure is described. The phosphorus dendron peripherally functionalized with phenolic OH group has been accomplished in a very versatile simple fashion, using the Schiff condensation and nucleophilic substitution reactions using P(S)Cl3, P(O)Cl3, 3-hydroxybenzaldehyde and 3-aminopheno. The structures of intermediate dendrons were confirmed by IR, NMR (1H, 13C and 31P), LC-Mass and C, H, N analysis. The structure of the final dendron (5) was confirmed by IR, NMR (1H, 13C and 31P), MALDI-TOF-MS, and C, H, N analysis. The thermal stability of the resulting functionalized dendron has been checked by TGA/DTA analysis. The surface topography observed by scanning electronic microscopic study (SEM) gives the reminiscent of the dendritic structure.  相似文献   

20.
在非极性溶剂体系中,开辟了利用反相液晶法制备多级有序纳米材料的新方法.利用嵌段共聚物表面活性剂在非极性溶剂中形成反相胶束,无机硅物种可以进入胶束的内部,在溶剂挥发后,有机-无机物种进一步组装成为反相六方液晶相.除去模板剂后即制备出尺寸规则的二氧化硅纳米棒材料.由于嵌段高分子的作用,六方排列的二氧化硅纳米棒进一步排列成层状结构(层间距约150nm).通过选择表面活性剂及改变其浓度,纳米棒的尺寸可以在9~15nm范围内调变.该反应途径对于合成其它尺寸均一、多级有序排列的纳米棒材料是非常有意义的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号