首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A facile development of highly efficient Pt-TiO(2) nanostructured films via versatile gas-phase deposition methods is described. The films have a unique one-dimensional (1D) structure of TiO(2) single crystals coated with ultrafine Pt nanoparticles (NPs, 0.5-2 nm) and exhibit extremely high CO(2) photoreduction efficiency with selective formation of methane (the maximum CH(4) yield of 1361 μmol/g-cat/h). The fast electron-transfer rate in TiO(2) single crystals and the efficient electron-hole separation by the Pt NPs were the main reasons attributable for the enhancement, where the size of the Pt NPs and the unique 1D structure of TiO(2) single crystals played an important role.  相似文献   

2.
Ethanol-soluble amphiphilic TiO(2) nanoparticles (NPs) of average diameter ~9 nm were synthesized, and an α-terpineol-based TiO(2) paste was readily prepared from them in comparatively few steps. When used for fabrication of photoelectrodes for dye-sensitized solar cells (DSSCs), the paste yielded highly transparent films and possessing greater-than-typical, thickness-normalized surface areas. These film properties enabled the corresponding DSSCs to produce high photocurrent densities (17.7 mA cm(-2)) and a comparatively high overall light-to-electrical energy conversion efficiency (9.6%) when deployed with the well-known ruthenium-based molecular dye, N719. These efficiencies are about ~1.4 times greater than those obtained from DSSCs containing photoelectrodes derived from a standard commercial source of TiO(2) paste.  相似文献   

3.
A novel hierarchical TiO(2) flower consisting of anatase TiO(2) nanotubes on a Ti foil substrate has been prepared via a mild hydrothermal reaction of TiO(2) nanoparticles/Ti foil. The photovoltaic performance of DSSC based on hierarchical TiO(2) flowers/Ti (7.2%) is much higher than that of TiO(2) nanoparticle/Ti (6.63%) because of its superior light scattering ability and fast electron transport. Moreover, full flexible DSSC based on the novel hierarchical TiO(2) flowers/Ti foil photoelectrode and electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) on indium tin oxide-coated poly(ethylene terephthalate) (ITO-PET) counter electrode shows a significant power conversion efficiency of 6.26%, accompanying a short-circuit current density of 11.96 mA cm(-2), an open-circuit voltage of 761 mV and a fill factor of 0.69.  相似文献   

4.
CO在铂修饰的氧化钛电极上电催化氧化行为的研究   总被引:3,自引:0,他引:3  
通过阴极还原-阳极氧化法制备了Pt—TiO2/Ti电极,研究了CO在该电极上的电化学行为和电极制备条件对CO电催化氧化的影响.结果表明,与Pt电极相比.CO在Pt—TiO2/Ti电极上的氧化峰峰电位负移了100mV,并且表现出较好的稳定性.通过XPS技术对Pt—TiO2/Ti电极进行了表征.发现Pt以金属形式存在,Ti以TiO2形式存在.Pt—TiO2/Ti电极能抗CO中毒的原因可能是因为TiO2的掺杂使引起催化剂中毒的桥式吸附的CO物种在复合催化剂上的吸附率较低所致.  相似文献   

5.
Nanocrystalline TiO2 thin films composed of densely packed grains were deposited onto indium-doped tin oxide (ITO)-coated glass substrates at room temperature using a chemical bath deposition technique. A layer-by-layer (LbL) process was utilized to obtain a 1.418-microm-thick TiO2/ZnO structure. The TiO2 surface was super-hydrophilic, but its hydrophilicity decreased considerably after ZnO deposition. Other TiO2/ZnO films were studied to assess their suitability as photoelectrodes in dye-sensitized solar cells (DSSCs).  相似文献   

6.
电沉积法制备介孔TiO_2/CdS薄膜光电极   总被引:2,自引:0,他引:2  
采用阴极恒电位沉积法,在介孔TiO2薄膜上制备了介孔TiO2/CdS薄膜光电极,用XRD,SEM,Raman,SPS和UV-Vis等多种手段对薄膜电极进行了表征.结果表明,CdS成功沉积到介孔TiO2的表面和孔道内,形成了异质结结构.通过光电流作用谱考察了该复合体薄膜电极的光电性能,结果表明,与单纯的介孔TiO2薄膜相比,其光电转换效率显著提高,这是由于CdS具有吸收可见光的特性以及CdS与介孔TiO2形成异质结从而使得光生载流子更容易分离的结果.  相似文献   

7.
脉冲电沉积法制备Pt-TiO2 纳米管电极及其电催化性能   总被引:2,自引:0,他引:2  
采用阳极氧化法在高纯钛片上原位组装TiO2纳米管阵列, 然后用脉冲电沉积方法将Pt沉积到TiO2纳米管阵列上, 制备出Pt-TiO2纳米管电极. 利用XRD和SEM对所获电极的微观结构和形貌进行表征, 结果表明, Pt纳米颗粒以花簇状分散在TiO2纳米管上, 晶粒大小约为25.6 nm. 对甲醇的电催化性能的研究结果表明, 脉冲电沉积制得的Pt-TiO2纳米管电极比TiO2纳米管电极和纯Pt片电极具有更高的电催化活性, 是Pt电极的40多倍.  相似文献   

8.
A one-step electrochemical approach for synthesis of Pt nanoparticles/reduced graphene oxide(Pt/RGO) was demonstrated.Graphene oxide(GO) and chloroplatinic acid were reduced to RGO and Pt nanoparticles(Pt NPs) simultaneously,and Pt/RGO composite was deposited on the fluorine doped SnO 2 glass during the electrochemical reduction.The Pt/RGO composite was characterized by field emission-scanning electron microscopy,Raman spectroscopy and X-ray photoelectron spectroscopy,which confirmed the reduction of GO and chloroplatinic acid and the formation of Pt/RGO composite.In comparison with Pt NPs and RGO electrodes obtained by the same method,results of cyclic voltammetry and electrochemical impedance spectroscopy measurements showed that the composite electrode had higher catalytic activity and charge transfer rate.In addition,the composite electrode had proved to have better performance in DSSCs than the Pt NPs electrode,which showed the potential application in energy conversion.  相似文献   

9.
张胜寒  梁可心  檀玉 《化学学报》2012,70(9):1109-1116
通过阳极氧化法在纯钛板上制备TiO2纳米管阵列电极.在光电化学电解池阳极中加入供电子物质乙二醇,显著减小了TiO2纳米管的电荷传递阻抗,促进了光电催化裂解水产氢反应.采用阴极电沉积和阳极氧化法制备了单质铈和氧化铈共同改性的TiO2纳米管阵列半导体光阳极,其平带电位向电负方向移动.采用电化学阻抗谱法(EIS)对改性后TiO2纳米管阵列在光电催化裂解水产氢中的电子传输性能以及界面性质进行了表征,确定了各阻抗弧对应的电极过程.采用合理的等效电路模型计算了电极的电子传输动力学参数.结果表明,经铈改性后的TiO2纳米管阵列膜电阻明显减小,有利于氢气的产生.探讨了单质铈与氧化铈促进TiO2纳米管阵列电荷传输的作用机理.  相似文献   

10.
The light harvesting efficiency of dye-sensitized photoelectrodes was enhanced by coupling a TiO(2) photonic crystal layer to a conventional film of TiO(2) nanoparticles. In addition to acting as a dielectric mirror, the inverse opal photonic crystal caused a significant change in dye absorbance which depended on the position of the stop band. Absorbance was suppressed at wavelengths shorter than the stop band maximum and was enhanced at longer wavelengths. This effect arises from the slow group velocity of light in the vicinity of the stop band, and the consequent localization of light intensity in the voids (to the blue) or in the dye-sensitized TiO(2) (to the red) portions of the photonic crystal. By coupling a photonic crystal to a film of TiO(2) nanoparticles, the short circuit photocurrent efficiency across the visible spectrum (400-750 nm) could be increased by about 26%, relative to an ordinary dye-sensitized nanocrystalline TiO(2) photoelectrode.  相似文献   

11.
A Zn chlorophyll-a derivative, Zn chlorin-e6 (ZnChl-e6), adsorbed onto a nanocrystalline TiO2 film (ZnChl-e6/TiO2) electrode was prepared, and the photovoltaic properties of the ZnChl-e6/TiO2 electrode were studied. The absorption peaks of ZnChl-e6/TiO2 observed at 420, 654, and 795 nm were attributed to the ZnChl-e6 molecules aggregating onto TiO2 film. The fluorescence attributed to the ZnChl-e6 monomer and aggregate was observed at 710 and 820 nm, respectively, and the fluorescence in both cases was quenched by TiO2 particles. The maximum of the incident photon-to-current conversion efficiency (IPCE) value in the photocurrent action spectrum was 800 nm, and the IPCE value was 7.0%. ZnChl-e6 molecules formed aggregates on a nanocrystalline TiO2 film electrode. From the photocurrent-photovoltage characteristics of the ZnChl-e6/TiO2 electrode irradiated with 100 mW cm(-2), the short-circuit photocurrent (I(SC)) was found to be 0.19 mA cm(-2) and the open-circuit photovoltage (V(OC)) was found to be 375 mV. The maximum power was estimated to be 28.7 microW cm(-2), and the fill factor (FF) was estimated to be 40.1%. A near-IR light induced photovoltaic conversion system using a ZnChl-e6 aggregate formed onto a nanocrystalline TiO2 film electrode was achieved.  相似文献   

12.
《中国化学快报》2023,34(1):107480
Organic semiconductors are promising candidates as photoactive layers for photoelectrodes used in photoelectrochemical (PEC) cells due to their excellent light absorption and efficient charge transport properties with the help of interfacial materials. However, the use of multilayers will make the charge transfer mechanism more complicated and decrease the PEC performance of the photoelectrode caused by the increased contact resistance. In this work, a PM6:Y6 bulk heterojunction (BHJ)-based photocathode is fabricated for efficient PEC hydrogen evolution reaction (HER) in an acidic aqueous solution. With RuO2 as an interfacial modification layer, the photocathode with a simple structure (fluorine-doped tin oxide (FTO)/PM6:Y6/RuO2) generates a maximum photocurrent density up to ?15 mA/cm2 at 0 V vs. reference hydrogen electrode (RHE), outperforming all previously reported BHJ-based photocathodes in terms of PEC performance. The highest ratiometric power-saved efficiency of 3.7% is achieved at 0.4 V vs. RHE.  相似文献   

13.
透明TiO2纳米管/FTO电极制备及表征   总被引:5,自引:3,他引:2  
采用射频磁控溅射方法在透明导电玻璃(FTO)上沉积纯钛薄膜, 室温条件下在H3PO4+HF电解液中通过恒压阳极氧化方法得到TiO2纳米管阵列, 并通过场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、UV-Vis透射光谱以及光电化学的方法对纳米管阵列进行了表征. 研究表明, 在电压为20 V、氧化时间为50 min时, 钛薄膜转化为TiO2纳米管阵列, 管长约为380 nm, 内径约为90 nm, 管壁约为15 nm; 再经过500 ℃空气热处理6 h之后得到锐钛矿型的TiO2纳米管/FTO透明电极, 在可见光区的平均透过率约为80%, TiO2禁带宽度为3.28 eV, 发生了蓝移, 带尾扩展到2.6 eV; 此外, 对结晶前后的复合电极分别在暗态和紫外光下进行线性扫描和瞬态光电流测试, 结果表明, 结晶的电极表现出更好的光电转换性能; 施加阳极电压和紫外光照射都能够促进TiO2光生载流子有效分离,使电子迅速传至导电玻璃表面通过外电路形成光电流.  相似文献   

14.
Here, we find that doping sp(2) selective nitrogen, N sp(2), into carbon nanotube (CNT) channels induces a positive shift in the Fermi level of TiO(2) photoelectrodes. It is found that this results in the large diffusion coefficient of solar driven electrons for increasing the photocurrent as well as in the low recombination rate for improving open circuit voltage with 0.74 V, which could not be overcome by using pristine CNT channels with 0.66 V.  相似文献   

15.
以草酸为电子给体在Pt-TiO2上光催化生成氢   总被引:8,自引:0,他引:8  
 以草酸为电子给体,研究了在Pt-TiO2上光催化生成氢的反应.草酸的存在明显促进了生成氢的反应;二氧化钛负载Pt也明显提高了反应速率,Pt的最佳负载量为w(Pt)=0.5%.草酸浓度对氢生成反应的影响符合Lang-muir关系式.最佳pH值为2~4.  相似文献   

16.
CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prepared samples was evaluated by photocatalytic H(2) production from lactic acid aqueous solution under UV and visible-light (λ ≥ 420 nm) irradiation. It was shown that no photocatalytic H(2)-production activity was observed on the pure TiO(2) NSs under UV and/or visible-light irradiation. Deposition of CdS NPs on Pt/TiO(2) NSs caused significant enhancement of the UV and visible-light photocatalytic H(2)-production rates. The morphology of TiO(2) particles had also significant influence on the visible-light H(2)-production activity. Among TiO(2) NSs, P25 and the NPs studied, the CdS-sensitized Pt/TiO(2) NSs show the highest photocatalytic activity (13.9% apparent quantum efficiency obtained at 420 nm), exceeding that of CdS-sensitized Pt/P25 by 10.3% and that of Pt/NPs by 1.21%, which can be attributed to the combined effect of several factors including the presence of exposed (001) facets, surface fluorination and high specific surface area. After many replication experiments of the photocatalytic hydrogen production in the presence of lactic acid, the CdS-sensitized Pt/TiO(2) NSs did not show great loss in the photocatalytic activity, confirming that the CdS/Pt/TiO(2) NSs system is stable and not photocorroded.  相似文献   

17.
采用原位化学法在纳米结构TiO2电极上制备了量子点PbS(Q-PbS), 并用电化学方法在TiO2/Q-PbS表面聚合3-甲基噻吩[poly(3-Methylthiophene), PMeT]. 研究结果表明, PMeT和Q-PbS单独修饰纳米结构TiO2电极和PMeT修饰Q-PbS连接纳米结构TiO2电极的光电流产生的起始波长都向长波方向移动; 在可见光区光电转换效率均比纳米结构TiO2的光电转换效率提高显著; PMeT与Q-PbS修饰的纳米结构TiO2之间存在p-n异质结. 在一定条件下p-n异质结的存在有利于光生电子/空穴的分离, 提高了光电转换效率.  相似文献   

18.
铂、钌共修饰的氧化钛电极对甲醇的电催化氧化   总被引:6,自引:0,他引:6  
燃料电池;铂、钌共修饰的氧化钛电极对甲醇的电催化氧化  相似文献   

19.
A novel strategy was designed to prepare Ag cluster-doped TiO(2) nanoparticles (Ag/TiO(2) NPs) without addition of any chemical reducing agent and/or organic additive. A defect-rich TiO(x) species was generated by laser ablation in liquid (LAL) of a Ti target. The silver ions could be reduced and deposited on the surface of TiO(2) NPs through the removal of oxygen vacancies and defects; the TiO(x) species evolved into anatase NPs in a hydrothermal treatment process. The derived Ag/TiO(2) NPs are approximately 25 nm in size, with narrow size distribution. The Ag clusters are highly dispersed inside TiO(2) and less than 3 nm in size. The doped amount can be tuned by changing the concentration of Ag(+) ions. The as-synthesized Ag/TiO(2) NPs display improved photocatalytic efficiency toward pentachlorophenol (PCP) degradation.  相似文献   

20.
The TiO(2)-B nanobelt (NB)/TiO(2) nanoparticle (NP) sandwich-type structure photoelectrode, with controllable nanobelt length, has been used to fabricate high-efficiency dye-sensitized solar cells (DSSCs), which combine the advantages of the rapid electron transport in TiO(2)-B NBs and the high surface area of TiO(2) NPs. The results indicate that the sandwich-type photoelectrode achieves higher photoelectrical conversion efficiency when compared with the TiO(2) nanoparticulate electrode. Increasing the length of TiO(2)-B NBs has been demonstrated to improve the photoelectric conversion efficiency (η). DSSCs with the longest (10 μm) TiO(2)-B NBs yield the highest η of 7.94%. The interfacial electron transport of DSSCs with different lengths of TiO(2)-B NBs has been quantitatively investigated using the photovoltage transient and the electrochemical impedance spectra, which demonstrates that the DSSCs with longest TiO(2)-B NBs display the highest electron collection efficiency and the fastest interfacial electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号