首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider positive solutions of $\varDelta u=0$ in $\mathbf{R}_+^n$ , $\partial _{\nu }u=u^q$ on $\partial \mathbf{R}_+^n$ , where $n\ge 3$ and $q>n/(n-2)$ . We investigate the qualitative property of positive $x_n$ -axial symmetric solutions. In particular, we are concerned with the asymptotic expansion and the intersection property of positive $x_n$ -axial symmetric solutions.  相似文献   

2.
We study the solvability of the quasilinear problem $$\begin{aligned} -\Delta _p u =\frac{u^q }{|x|^p}+g(\lambda , x, u) \quad u>0 \quad \text{ in}\;\Omega , \end{aligned}$$ with $u=0$ on $\partial \Omega $ , where $-\Delta _p(\cdot )$ is the $p$ -Laplacian operator, $q>0, 1<p<N$ and $\Omega $ a smooth bounded domain in $\mathbb R ^N$ . We consider the following cases:
  1. $g(\lambda ,x,u)\equiv 0$ ;
  2. $g(\lambda ,x,u)=\lambda f(x)u^r$ , with $\lambda >0$ and $f(x) \gneq 0$ belonging to $L^{\infty }(\Omega )$ and $0 \le r<p-1$ .
In the case $(i)$ , the existence of solutions depends on the location of the origin in the domain, on the geometry of the domain and on the exponent $q$ . On the other hand, in the case $(ii)$ , the existence of solutions only depends on the position of the origin and on the coefficient $\lambda $ , but does not depend either on the exponent $q$ or on the geometry of $\Omega $ .  相似文献   

3.
We study the nonlinear fractional equation $(-\Delta )^su=f(u)$ in $\mathbb R ^n,$ for all fractions $0<s<1$ and all nonlinearities $f$ . For every fractional power $s\in (0,1)$ , we obtain sharp energy estimates for bounded global minimizers and for bounded monotone solutions. They are sharp since they are optimal for solutions depending only on one Euclidian variable. As a consequence, we deduce the one-dimensional symmetry of bounded global minimizers and of bounded monotone solutions in dimension $n=3$ whenever $1/2\le s<1$ . This result is the analogue of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation $-\Delta u=f(u)$ in $\mathbb R ^n$ . It remains open for $n=3$ and $s<1/2$ , and also for $n\ge 4$ and all $s$ .  相似文献   

4.
We consider the system $\Delta u - W_u(u) = 0$ , where $u: \mathbb R ^n \rightarrow \mathbb R ^m$ , for potentials $W: \mathbb R ^m \rightarrow \mathbb R $ that possess $N$ global minima and are invariant under a finite reflection group $G$ . We prove the existence of nontrivial $G$ -equivariant entire solutions connecting the $N$ minima of $W$ . Our proof only requires the minima of $W$ to be nondegenerate and an assumption on the behavior of $W$ for large $u$ .  相似文献   

5.
For vector valued solutions \(u\) to the \(p\) -Laplacian system \(-\triangle _p u=F\) in a domain of \({\mathbb {R}}^n,\,p>1,\,n \ge 2,\) if \(F\) belongs to the limiting Lorentz space \(L(n,1),\) then \(Du\) is continuous.  相似文献   

6.
A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$ . In this paper we prove that a finite group $G$ is $p$ -nilpotent if every minimal subgroup of $P\bigcap G^{N}$ is weakly-supplemented in $G$ , and when $p=2$ either every cyclic subgroup of $P\bigcap G^{N}$ with order 4 is weakly-supplemented in $G$ or $P$ is quaternion-free, where $p$ is the smallest prime number dividing the order of $G$ , $P$ a sylow $p$ -subgroup of $G$ .  相似文献   

7.
We consider the problem of computing the minimum of a polynomial function \(g\) on a basic closed semialgebraic set \(E\subset \mathbb {R}^n\) . We present a probabilistic symbolic algorithm to find a finite set of sample points of the subset \(E^{\min }\) of \(E\) where the minimum of \(g\) is attained, provided that \(E^{\min }\) is non-empty and has at least one compact connected component.  相似文献   

8.
Suppose that $G$ is a finite group and $H$ is a subgroup of $G$ . $H$ is said to be an $s$ -quasinormally embedded in $G$ if for each prime $p$ dividing the order of $H$ , a Sylow $p$ -subgroup of $H$ is also a Sylow $p$ -subgroup of some $S$ -quasinormal subgroup of $G$ ; $H$ is said to be $c$ -normal in $G$ if $G$ has a normal subgroup $T$ such that $G=HT$ and $H\cap T\le H_{G}$ , where $H_{G}$ is the normal core of $H$ in $G$ . We fix in every non-cyclic Sylow subgroup $P$ of $G$ some subgroup $D$ satisfying $1<|D|<|P|$ and study the structure of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is either $s$ -quasinormally embedded or $c$ -normal in $G$ . Some recent results are generalized and unified.  相似文献   

9.
A subgroup property $\alpha $ is transitive in a group $G$ if $U \alpha V$ and $V \alpha G$ imply that $U \alpha G$ whenever $U \le V \le G$ , and $\alpha $ is persistent in $G$ if $U \alpha G$ implies that $U \alpha V$ whenever $U \le V \le G$ . Even though a subgroup property $\alpha $ may be neither transitive nor persistent, a given subgroup $U$ may have the property that each $\alpha $ -subgroup of $U$ is an $\alpha $ -subgroup of $G$ , or that each $\alpha $ -subgroup of $G$ in $U$ is an $\alpha $ -subgroup of $U$ . We call these subgroup properties $\alpha $ -transitivity and $\alpha $ -persistence, respectively. We introduce and develop the notions of $\alpha $ -transitivity and $\alpha $ -persistence, and we establish how the former property is related to $\alpha $ -sensitivity. In order to demonstrate how these concepts can be used, we apply the results to the cases in which $\alpha $ is replaced with “normal” and the “cover-avoidance property.” We also suggest ways in which the theory can be developed further.  相似文献   

10.
Let $X$ be a compact connected Riemann surface and $G$ a connected reductive complex affine algebraic group. Given a holomorphic principal $G$ -bundle $E_G$ over $X$ , we construct a $C^\infty $ Hermitian structure on $E_G$ together with a $1$ -parameter family of $C^\infty $ automorphisms $\{F_t\}_{t\in \mathbb R }$ of the principal $G$ -bundle $E_G$ with the following property: Let $\nabla ^t$ be the connection on $E_G$ corresponding to the Hermitian structure and the new holomorphic structure on $E_G$ constructed using $F_t$ from the original holomorphic structure. As $t\rightarrow -\infty $ , the connection $\nabla ^t$ converges in $C^\infty $ Fréchet topology to the connection on $E_G$ given by the Hermitian–Einstein connection on the polystable principal bundle associated to $E_G$ . In particular, as $t\rightarrow -\infty $ , the curvature of $\nabla ^t$ converges in $C^\infty $ Fréchet topology to the curvature of the connection on $E_G$ given by the Hermitian–Einstein connection on the polystable principal bundle associated to $E_G$ . The family $\{F_t\}_{t\in \mathbb R }$ is constructed by generalizing the method of [6]. Given a holomorphic vector bundle $E$ on $X$ , in [6] a $1$ -parameter family of $C^\infty $ automorphisms of $E$ is constructed such that as $t\rightarrow -\infty $ , the curvature converges, in $C^0$ topology, to the curvature of the Hermitian–Einstein connection of the associated graded bundle.  相似文献   

11.
Let $n$ be a positive integer, not a power of two. A Reinhardt polygon is a convex $n$ -gon that is optimal in three different geometric optimization problems: it has maximal perimeter relative to its diameter, maximal width relative to its diameter, and maximal width relative to its perimeter. For almost all $n$ , there are many Reinhardt polygons with $n$ sides, and many of them exhibit a particular periodic structure. While these periodic polygons are well understood, for certain values of $n$ , additional Reinhardt polygons exist, which do not possess this structured form. We call these polygons sporadic. We completely characterize the integers $n$ for which sporadic Reinhardt polygons exist, showing that these polygons occur precisely when $n=pqr$ with $p$ and $q$ distinct odd primes and $r\ge 2$ . We also prove that a positive proportion of the Reinhardt polygons with $n$ sides is sporadic for almost all integers $n$ , and we investigate the precise number of sporadic Reinhardt polygons that are produced for several values of $n$ by a construction that we introduce.  相似文献   

12.
Let \((M,g)\) be a compact Riemannian manifold of dimension \(n\ge 3\) . In this paper, we give various properties of the eigenvalues of the Yamabe operator \(L_g\) . In particular, we show how the second eigenvalue of \(L_g\) is related to the existence of nodal solutions of the equation \(L_g u = {\varepsilon }|u|^{N-2}u,\) where \({\varepsilon }= +1,\) \(0,\) or \(-1.\)   相似文献   

13.
We consider the unconstrained $L_q$ - $L_p$ minimization: find a minimizer of $\Vert Ax-b\Vert ^q_q+\lambda \Vert x\Vert ^p_p$ for given $A \in R^{m\times n}$ , $b\in R^m$ and parameters $\lambda >0$ , $p\in [0, 1)$ and $q\ge 1$ . This problem has been studied extensively in many areas. Especially, for the case when $q=2$ , this problem is known as the $L_2-L_p$ minimization problem and has found its applications in variable selection problems and sparse least squares fitting for high dimensional data. Theoretical results show that the minimizers of the $L_q$ - $L_p$ problem have various attractive features due to the concavity and non-Lipschitzian property of the regularization function $\Vert \cdot \Vert ^p_p$ . In this paper, we show that the $L_q$ - $L_p$ minimization problem is strongly NP-hard for any $p\in [0,1)$ and $q\ge 1$ , including its smoothed version. On the other hand, we show that, by choosing parameters $(p,\lambda )$ carefully, a minimizer, global or local, will have certain desired sparsity. We believe that these results provide new theoretical insights to the studies and applications of the concave regularized optimization problems.  相似文献   

14.
Graph coloring is an important tool in the study of optimization, computer science, network design, e.g., file transferring in a computer network, pattern matching, computation of Hessians matrix and so on. In this paper, we consider one important coloring, vertex coloring of a total graph, which is familiar to us by the name of “total coloring”. Total coloring is a coloring of \(V\cup {E}\) such that no two adjacent or incident elements receive the same color. In other words, total chromatic number of \(G\) is the minimum number of disjoint vertex independent sets covering a total graph of \(G\) . Here, let \(G\) be a planar graph with \(\varDelta \ge 8\) . We proved that if for every vertex \(v\in V\) , there exists two integers \(i_{v},j_{v} \in \{3,4,5,6,7,8\}\) such that \(v\) is not incident with intersecting \(i_v\) -cycles and \(j_v\) -cycles, then the vertex chromatic number of total graph of \(G\) is \(\varDelta +1\) , i.e., the total chromatic number of \(G\) is \(\varDelta +1\) .  相似文献   

15.
Suppose that \(G\) is a finite group and \(H\) is a subgroup of \(G\) . \(H\) is said to be \(s\) -quasinormally embedded in \(G\) if for each prime \(p\) dividing the order of \(H\) , a Sylow \(p\) -subgroup of \(H\) is also a Sylow \(p\) -subgroup of some \(s\) -quasinormal subgroup of \(G\) . We fix in every non-cyclic Sylow subgroup \(P\) of \(G\) some subgroup \(D\) satisfying \(1<|D|<|P|\) and study the \(p\) -nilpotency of \(G\) under the assumption that every subgroup \(H\) of \(P\) with \(|H|=|D|\) is \(s\) -quasinormally embedded in \(G\) . Some recent results and the Frobenius \(^{\prime }\) theorem are generalized.  相似文献   

16.
Let \({\mathcal {A}}\subseteq {\mathbb {N}}^n\) be a finite set, and \(K\subseteq {\mathbb {R}}^n\) be a compact semialgebraic set. An \({\mathcal {A}}\) -truncated multisequence ( \({\mathcal {A}}\) -tms) is a vector \(y=(y_{\alpha })\) indexed by elements in \({\mathcal {A}}\) . The \({\mathcal {A}}\) -truncated \(K\) -moment problem ( \({\mathcal {A}}\) -TKMP) concerns whether or not a given \({\mathcal {A}}\) -tms \(y\) admits a \(K\) -measure \(\mu \) , i.e., \(\mu \) is a nonnegative Borel measure supported in \(K\) such that \(y_\alpha = \int _K x^\alpha \mathtt {d}\mu \) for all \(\alpha \in {\mathcal {A}}\) . This paper proposes a numerical algorithm for solving \({\mathcal {A}}\) -TKMPs. It aims at finding a flat extension of \(y\) by solving a hierarchy of semidefinite relaxations \(\{(\mathtt {SDR})_k\}_{k=1}^\infty \) for a moment optimization problem, whose objective \(R\) is generated in a certain randomized way. If \(y\) admits no \(K\) -measures and \({\mathbb {R}}[x]_{{\mathcal {A}}}\) is \(K\) -full (there exists \(p \in {\mathbb {R}}[x]_{{\mathcal {A}}}\) that is positive on \(K\) ), then \((\mathtt {SDR})_k\) is infeasible for all \(k\) big enough, which gives a certificate for the nonexistence of representing measures. If \(y\) admits a \(K\) -measure, then for almost all generated \(R\) , this algorithm has the following properties: i) we can asymptotically get a flat extension of \(y\) by solving the hierarchy \(\{(\mathtt {SDR})_k\}_{k=1}^\infty \) ; ii) under a general condition that is almost sufficient and necessary, we can get a flat extension of \(y\) by solving \((\mathtt {SDR})_k\) for some \(k\) ; iii) the obtained flat extensions admit a \(r\) -atomic \(K\) -measure with \(r\le |{\mathcal {A}}|\) . The decomposition problems for completely positive matrices and sums of even powers of real linear forms, and the standard truncated \(K\) -moment problems, are special cases of \({\mathcal {A}}\) -TKMPs. They can be solved numerically by this algorithm.  相似文献   

17.
Let \(A\) and \(B\) be two points of \(\mathrm{{PG}}(2,q^n)\) , and let \(\Phi \) be a collineation between the pencils of lines with vertices \(A\) and \(B\) . In this paper, we prove that the set of points of intersection of corresponding lines under \(\Phi \) is either the union of a scattered \(\mathrm{{GF}}(q)\) -linear set of rank \(n+1\) with the line \(AB\) or the union of \(q-1\) scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n\) with \(A\) and \(B\) . We also determine the intersection configurations of two scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n+1\) of \(\mathrm{{PG}}(2,q^n)\) both meeting the line \(AB\) in a \(\mathrm{{GF}}(q)\) -linear set of pseudoregulus type with transversal points \(A\) and \(B\) .  相似文献   

18.
Let $R$ be a non-commutative prime ring, with center $Z(R)$ , extended centroid $C$ and let $F$ be a non-zero generalized derivation of $R$ . Denote by $L$ a non-central Lie ideal of $R$ . If there exists $0\ne a\in R$ such that $a[F(x),x]_k\in Z(R)$ for all $x\in L$ , where $k$ is a fixed integer, then one of the followings holds: (1) either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$ , (2) or $R$ satisfies $s_4$ , the standard identity in $4$ variables, and $char(R)=2$ ; (3) or $R$ satisfies $s_4$ and there exist $q\in U, \gamma \in C$ such that $F(x)=qx+xq+\gamma x$ .  相似文献   

19.
Let $D$ be an integrally closed domain with quotient field $K$ and $n$ a positive integer. We give a characterization of the polynomials in $K[X]$ which are integer-valued over the set of matrices $M_n(D)$ in terms of their divided differences. A necessary and sufficient condition on $f\in K[X]$ to be integer-valued over $M_n(D)$ is that, for each $k$ less than $n$ , the $k$ th divided difference of $f$ is integral-valued on every subset of the roots of any monic polynomial over $D$ of degree $n$ . If in addition $D$ has zero Jacobson radical then it is sufficient to check the above conditions on subsets of the roots of monic irreducible polynomials of degree $n$ , that is, conjugate integral elements of degree $n$ over $D$ .  相似文献   

20.
For a group $G$ , denote by $\omega (G)$ the number of conjugacy classes of normalizers of subgroups of $G$ . Clearly, $\omega (G)=1$ if and only if $G$ is a Dedekind group. Hence if $G$ is a 2-group, then $G$ is nilpotent of class $\le 2$ and if $G$ is a $p$ -group, $p>2$ , then $G$ is abelian. We prove a generalization of this. Let $G$ be a finite $p$ -group with $\omega (G)\le p+1$ . If $p=2$ , then $G$ is of class $\le 3$ ; if $p>2$ , then $G$ is of class $\le 2$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号