首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Y2O3:Eu3+红色荧光粉由于色纯度高、化学性质稳定和量子效率接近100%而广泛用于荧光灯和投影电视等方面.近年来,Y2O3:Eu3+的大量研究工作主要集中于纳米粉末的制备方法及其与体相材料不同的发光特性[1~3].最近,有关Y2O3:Eu3+及其稀土化合物的纳米管、纳米线和纳米带一维材料的制备成为研究热点.Wu Changfeng等[4,5]利用表面活性剂合成了Y2O3 : Eu3+纳米管.激光格位选择激发测试结果表明,Eu3+在纳米管中占据3个不同的格位,其611 nm处的红色发光峰出现了宽化.He Yu等[6]采用水热法及退火处理制备出了Y2O3:Eu3+纳米带,发现Eu3+的发射峰不仅宽化,而且出现了625 nm的新峰.Li Yadong等[7~9]采用水热法制备了稀土氧化物、硫氧化物和氢氧化物等的纳米线和纳米管,并探索了其形成机理,同时发现Y2O3S : yb3+,Er3+具有上转换的性质.  相似文献   

2.
以B2O3为助熔剂,在1 350 ℃、还原性气氛下成功制备了SrAl2O4单相粉末样品。用同样的方法制备了系列单相Sr1-x-yAl2O4:Eu2+x,Dy3+y·nB2O3(0.005≤x≤0.07, 0.01≤y≤0.05,0.05≤n≤0.25)样品并表征了其长余辉发光特性。结果表明,最佳的Eu2+含量为0.02。辅助激活离子Dy3+在Sr0.98Al2O4:Eu2+0.02中的掺杂在一定范围内可以显著提高亮度和余辉时间,最佳Dy3+含量为0.03。研究不同B2O3含量对Sr0.95Al2O4:Eu2+0.02,Dy3+0.03发光性能的影响,结果说明最佳的B2O3含量为n=0.1,余辉肉眼可见(≥0.32 mcd·m-2)时间达4 000 min。利用正电子湮灭技术和热释光技术,研究和讨论了B2O3对Sr0.95Al2O4:Eu2+0.02,Dy3+0.03的发光和余辉性能的影响,结果表明B2O3的添加有助于Dy3+在晶格中形成深度合适、有益于余辉的空位缺陷。  相似文献   

3.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

4.
空气中合成M2B4O7:Eu3+(M=Na,K)荧光体及其性质表征   总被引:7,自引:0,他引:7  
以M2B4O7(M=Na,K)为基质,在空气中掺杂稀土元素Eu3+得到了Na2B4O7:Eu3+和K2B4O7:Eu3+荧光体.探讨了体系的烧结条件和荧光性质,分析了晶体的结构.结果表明,虽然两种体系的最佳合成条件不同,但是体系中都同时存在[BO4]和[BO3]结构;稀土离子Eu3+的发光以电偶极跃迁5D0-7F2为主,处于非中心对称的格位上,并且可以很好地存在于基质中,Na2B4O7:Eu3+具有较强的发光强度.  相似文献   

5.
SiO2 crystals have been used in electroluminescence devices and thermoluminescence (TL) dosimeters. However, their emission mechanisms have not yet been clearly explained. Recently, it has become possible to obtain amorphous, highly pure, SiO2 prepared by the sol-gel method. The emission mechanism of TL was investigated using Al3+ and/or Eu3+-doped SiO2 crystalline samples prepared by heat-treating under much lower temperature than the melting point of SiO2. The TL spectrum of Eu3+-doped sample had main peaks due to the electron transitions from 5D2 to 7F5 (ca. 570 nm, yellow peak) and from 5D0 to 7F2 (ca. 610 nm, red peak). The yellow peak intensity has a maximum value in the SiO2 doped with near 1 mmol% of Eu2O3, while the red peak intensity was almost constant. These facts suggest that bright yellow emission of SiO2TL phosphor is synthesized by the diffusion of Eu3+ ion in SiO2 matrix prepared by sol-gel method.  相似文献   

6.
Nanocrystalline YVO4:Eu3+ was synthesized by direct precipitation reaction, which was then annealed at different temperatures. The results of XRD showed that nanocrystalline YVO4:Eu3+ could be obtained in solution at 60 °C, and the mean particle sizes of samples are increased as annealing temperature is increased. The results of TEM exhibit that the sizes of samples are around 5-30 nm. Studies on the excitation spectra show that there are a large number of the structural distortions in smaller particles. By analyzing line splitting patterns and peaks broadening in the emission spectra, we consider that the deviations in intensity patterns of 5D0-7F2 are affected by distortions of crystal lattice. Some abnormal behaviors can be attributed to higher ratio of surface to volume, which lead to the different local symmetry environment of Eu3+ ions on the surface.  相似文献   

7.
BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)2, Eu(NO3)3 and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ 5D0-7FJ (J=1-4) transitions, with the magnetic dipole 5D0-7F1 allowed transition (590 nm) being the most prominent emission line.  相似文献   

8.
SrZnO2:Eu3+ has been synthesized by solid-state reaction and its photoluminescence in ultraviolet (UV)-vacuum ultraviolet (VUV) range was investigated. The broad bands around 254 nm are assigned to CT band of Eu3+-O2−. With the increasing of Eu3+ concentration, Eu3+ could occupy different sites, which leads to the broadening of CT band. A sharp band is observed in the region of 110-130 nm, which is related to the host absorption. The phosphors emit red luminescence centered at about 616 nm due to Eu3+5D07F2 both under 254 and 147 nm, but none of Eu2+ blue emission can be observed.  相似文献   

9.
SrF2:Eu3+ nanospheres with homogeneous diameter have been synthesized by a microemulsion-mediated hydrothermal method for the first time, in which quaternary microemulsion of CTAB/water/cyclohexane/n-pentanol was used. The possible reaction mechanism and the luminescent properties of SrF2:Eu3+ nanospheres were also investigated in this paper. The morphology and grain sizes of final products were characterized by field emission scanning electron microscopy and transmission electron microscopy, indicating that most of the products were nanospheres with an average diameter of ∼50 nm. Room-temperature emission spectra, recorded under 394-nm excitation, showed that the transition of 5D0 → 7F1 emission be dominating in SrF2:Eu3+ nanospheres. From the dependence of the luminescence intensity on the concentration of Eu3+ ions, the optimal dopant concentration is 2 mol%.  相似文献   

10.
A phosphor, Ba0.97Al2Si2O8∶Eu2+, was synthesized by high temperature solid-phase method at different temperatures. The samples were characterized by TG/DTA, XRD and fluorescence spectroscopy. The results show that the main phase for host of these luminescence materials is barium feldspar BaAl2Si2O8∶Eu2+ and there is a transition from hexagonal crystal system to monoclinic crystal system in the process of the sintering of barium feldspar. The luminescent phenomen of barium feldspar with hexagonal structure can not be observed under the excitation of ultraviolet lamp of 365 nm while the barium feldspar with monoclinic structure has excellent luminescence properties. The excitation spectra of all these samples show broad band spectra ranging from 250~390 nm with peak at λex of 357 nm,which indicates that these samples can be effectively excited by near ultraviolet ; the emission spectra range from 380~600 nm with peak at λem of 433 nm. The luminescent intensity increases then decreases with the concentration of doping Eu2+ ions. When the concentration of dopants is 2.5mol%, the luminescent intensity reaches the maximum value. When the concentration of Eu2+ ions changes from 0.5mol% to 2.5mol%, the emission peak has a red shift from 427 nm to 440 nm.  相似文献   

11.
采用共沉淀法及1 200 ℃后续煅烧4 h,成功制备了CaSb2O6:Bi3+,Eu3+荧光粉,并对其结构及发光性能进行了研究。所制备荧光粉颗粒为六边形类圆饼状,平均尺寸在100~600 nm之间。对CaSb2O6:Bi3+,Eu3+发光的机理分析表明,Bi3+对Eu3+的发光存在高效的敏化与能量传递。当Bi3+和Eu3+的掺杂浓度分别为0.5%和8%,Eu3+位于580 nm(5D07F0 )处的荧光发射显著增强,Bi3+,Eu3+共掺样品的荧光强度是CaSb2O6:Eu3+的10倍左右。调节Bi3+/Eu3+离子掺杂比,色坐标呈现了从蓝、白光到红光的变化,表明该荧光粉可分别作为蓝或红色荧光粉使用,甚至可实现从蓝、白光到红光的自由调控,这为白光LED荧光粉的发展提供了参考。  相似文献   

12.
Photoluminescence (PL) of Eu3+ was studied in SrIn2O4 host lattice. A complete solid solubility of Eu3+ has been found in the series SrIn2−xEuxO4 [x=0-2.0]. The phase formation at a relatively low temperature and in a very short duration was achieved by combustion synthesis (CS). Concentration quenching of luminescence has been observed in SrIn2−xEuxO4 [x=0.1-2.0] and the critical concentration for maximum emission was found to be with x=0.3. In order to find the role of crystallite size on the PL properties of SrIn2O4:Eu3+, the results obtained with phosphors synthesized by solid state reaction (SSR) and CS methods were compared.  相似文献   

13.
Eu3+-doped Gd3PO7 nanospheres with an average diameter of ∼300 nm and a narrow size distribution have been prepared by a facile combustion method and structurally characterized by X-ray diffraction and field emission scanning electron microscopy. The luminescent properties were systemically studied by the measurement of excitation/emission spectra, and emission spectra under different temperatures, as well as by photostability. The strong red-emission intensity peaking at 614 nm originates the 5D07F2 transition and is observed under 254-nm irradiation, indicating that Eu3+ ions in Gd3PO7 mainly occupied non-centrosymmetry sites. The CIE1931 XY chromaticity coordinates of Gd3PO7:Eu3+ nanospheres are (x=0.654, y=0.345) in the red area, which is near the National Television Standard Committee standard chromaticity coordinates for red. Thus, Gd3PO7:Eu3+ nanospheres may be potential red-emitting phosphors for PDP and Xe-based mercury-free lamps.  相似文献   

14.
Ce3+,Tb3+,Eu3+共掺杂Sr2MgSi2O7体系的白色发光和能量传递机理   总被引:1,自引:0,他引:1  
通过正交试验,采用高温固相法制备了Sr2-x-y-zMgSi2O7∶xCe3+,yTb3+,zEu3+系列样品.使用X射线衍射仪和荧光光谱仪表征了样品的物相和发光性质,并讨论了Ce3+-Tb3+-Eu3+共掺杂Sr2MgSi2O7体系中的能量传递过程.实验结果表明,在327 nm波长激发下,所合成荧光粉的发射峰主要位于387 nm(蓝紫)、542nm(绿)和611 nm(红)处;分别以387,542和611 nm为监控波长,所得激发光谱显示荧光粉在327 nm处有最好的激发.在327 nm光激发下,系列样品发光进入白光区.最优化的荧光粉为Sr1.91MgSi2O7∶0.01Ce3+,0.05Tb3+,0.03Eu3+,其色坐标为(0.337,0.313),是一种潜在的发光二极管(LED)用白色荧光粉.  相似文献   

15.
YBO3:Eu荧光粉的水热法制备及形貌控制   总被引:5,自引:0,他引:5  
用水热法在低于300℃成功地制备出具有不同形貌的YBO3:Eu3+荧光粉,其反应温度比固相反应了约800℃.研究了初始原料、pH值、反应温度、反应溶剂和催化剂等条件对目的产物形貌及粒度的,得到了具有Vaterite结构、粒度分布均匀的球形荧光粉的最佳合成工艺.在254nm激发下,水热法的球形Y0.95Eu0.05BO3荧光粉最强发射峰位于598nm处,属于Eu3+的5D0→7F1的跃迁,是固相反应所品的1.5倍.这些结果表明,在PDP和荧光灯等显示和照明用荧光粉的制备中水热法具有潜在的应用.  相似文献   

16.
Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by 5D0-7F2 transition of Eu3+ (618 nm, red). The PL and CL intensities of Eu3+ increase with increasing the annealing temperature and the number of coating cycles. The optimum concentration for Eu3+ was determined to be 5 mol% of Gd3+ in GdVO4 host.  相似文献   

17.
A new efficient blue phosphor, Eu2+ activated SrZnP2O7, has been synthesized at 1000 °C under reduced atmosphere and the crystal structure and photoluminescence properties have been investigated. The crystal structure of SrZnP2O7 was obtained via Rietveld refinement of powder X-ray diffraction (XRD) pattern. It was found that SrZnP2O7 crystallizes in space group of P21/n (no. 14), Z=4, and the unit cell dimensions are: a=5.30906(2) Å, b=8.21392(3) Å, c=12.73595(5) Å, β=90.1573(3)°, and V=555.390(3) Å3. Under ultraviolet excitation (200-400 nm), efficient Eu2+ emission peaked at 420 nm was observed, of which the luminescent efficiency at the optimal concentration of Eu2+ (4 mol%) was estimated to be 96% as that of BaMgAl10O17:Eu2+. Hence, the SrZnP2O7:Eu2+ exhibit great potential as a phosphor in different applications, such as ultraviolet light emitting diode and photo-therapy lamps.  相似文献   

18.
Silica xerogels containing Eu3+ ions and SnO2 nanocrystals were prepared in the sol‐gel process, and characterized by x‐ray diffraction (XRD) and photoluminescence spectra. Under the excitation at 393 nm, characteristic emission of Eu3+ ions at 614 nm was enhanced with increasing amount of SnO2 nanocrystals. Moreover, when the Eu3+/SnO2 co‐doped samples were excited at 345 nm, corresponding to the sideband of SnO2 nanocrystals, the emission of Eu3+ ions at 614 nm was clearly observed, while no emission of Eu3+ ions for the Eu3+‐doped sample. It may be ascribed to the energy transfer from SnO2 conduction band to Eu3+ conduction band. Further experimental results suggest that the energy transfer may be achieved through surface transition state.  相似文献   

19.
Spectral-luminescent characteristics of Sr2Y8(SiO4)6O2: Eu powder crystal phosphor with the apatite structure and high-intensity luminescence of Eu3+ ions have been studied. The charge state of europium in the samples has been characterized by means of X-ray L3-adsorption spectroscopy. It was established that Eu3+ forms two types of optical centers. Besides, luminescence of Eu2+ions was found. Reduction Eu3+→Eu2+ was considered, which may be due to vacancy formation in the 4f crystal lattice position and to negative charge transfer by this vacancy to two ions. Thus, in the silicate lattice there exist inhomogeneously distributed oxygen-deficient centers, which are responsible for nonradiative transfer of excitation energy to Eu3+ and Eu2+ ions. To study electron-vibrational interactions in the crystal phosphor samples, their IR and Raman spectra were examined. In the luminescence spectrum of Eu2+, a series of low-intensity bands caused by interaction of the 4f65d state of Eu2+ with silicate lattice vibrations was observed.  相似文献   

20.
We present a visual tool and facile method to detect MCF-7 breast cancer cells by using YVO4:Eu3+@silica-NH-GDA-IgG bio-nanocomplexes. To obtain these complexes, YVO4:Eu3+ nanoparticles with a uniform size of 10–25 nm have been prepared firstly by the hydrothermal process, followed by surface functionalization to be bio-compatible and conjugated with cancer cells. The YVO4:Eu3+@silica-NH-GDA-IgG nanoparticles exhibited an enhanced red emission at 618 nm under an excitation wavelength of 355 nm and were strongly coupled with MCF-7 breast cancer cells via biological conjugation. These bio-nanocomplexes showed a superior sensitiveness for MCF-7 cancer cell labelling with a detection percentage as high as 82%, while no HEK-293A healthy cells were probed under the same conditions of in vitro experiments. In addition, the detection percentage of MCF-7 breast cancer cells increased significantly via the functionalization and conjugation of YVO4:Eu3+ nanoparticles. The experimental results demonstrated that the YVO4:Eu3+@silica-NH-GDA-IgG bio-nanocomplexes can be used as a promising labelling agent for biomedical imaging and diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号