首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2004,16(5):379-385
All‐solid‐state chloride sensors were prepared by incorporation of trihexadecyl‐methylammonium chloride (THMACl) as an ion‐exchanger salt into a conjugated polymer membrane, poly(3‐octylthiophene) (POT). The influence of additional membrane components, such as a lipophilic anion, (potassium tetrakis[3,5‐bis(trifluoromethyl)phenyl] borate), poly(vinyl chloride) (PVC) or a plasticizer, (2‐nitrophenyl octyl ether) were studied. The membrane components were dissolved in chloroform except for PVC, which was dissolved in tetrahydrofuran (THF). The membrane solution was deposited on glassy carbon (GC) by solution casting resulting in all‐solid‐state chloride sensors. The sensor characteristics were determined potentiometrically and with impedance spectroscopy. The addition of plasticizer was found to be crucial in obtaining a well functioning Cl?‐ISE based on POT and THMACl.  相似文献   

2.
The hydrophobic conductive polymer, poly(3-octylthiophene) (POT), is considered as uniquely suited to be used as an ion-to-electron transducer in solid contact (SC) ion-selective electrodes (ISEs). However, the reports on the performance characteristics of POT-based SC ISEs are quite conflicting. In this study, the potential sources of the contradicting results on the ambiguous drift and poor potential reproducibility of POT-based ISEs are compiled, and different approaches to minimize the drift and the differences in the standard potentials of POT-based SC ISEs are shown. To set the potential of the POT film, it has been loaded with a 7,7,8,8-tetracyanoquinodimethane (TCNQ/TCNQ·?) redox couple. An approximately 1:1 TCNQ/TCNQ·?ratio in the POT film has been achieved through potentiostatic control of the potential of the redox couple-loaded conductive polymer. It is hypothesized that once the POT film has a stable, highly reproducible redox potential, it will provide similarly stable and reproducible interfacial potentials between the POT film and the electron-conducting substrate and result in SC ISEs with excellent reproducibility and potential stability. Towards this goal, the potentials of Au, GC, and Pt electrodes with drop-cast POT film coatings were recorded in KCl solutions as a function of time. Some of the POT films were loaded with TCNQ and coated with a K+-selective membrane. The improvement in the potential stabilities and sensor-to-sensor reproducibility as a consequence of the incorporation of TCNQ in the POT film and the potentiostatic control of the TCNQ/TCNQ·?ratio is reported.  相似文献   

3.
《Electroanalysis》2005,17(18):1609-1615
Potentiometric Ag+ sensors were prepared by galvanostatic electropolymerization of 3,4‐ethylenedioxythiophene (EDOT) and pyrrole (Py) on glassy carbon electrodes by using sulfonated calixarenes as doping ions. Poly(3,4‐ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) doped with p‐sulfonic calix[4]arene (C4S), p‐sulfonic calix[6]arene (C6S) and p‐sulfonic calix[8]arene (C8S) were compared. PEDOT and PPy doped with poly(styrene sulfonate) (PSS) were also included for comparison. The analytical performance of the conducting polymer‐based Ag+ sensors was studied by potentiometric measurements. All conducting polymer and dopant combinations showed sensitivity and selectivity to Ag+ compared to several alkali, alkaline‐earth, and transition‐metal cations. The type of the conducting polymer used for the fabrication of the electrodes was found to have a more significant effect on the selectivity of the electrodes to Ag+ than the ring size of the sulfonated calixarenes used as dopants. Selected conducting polymer‐based sensors were studied by cyclic voltammetry (CV) and energy dispersive analysis of X‐rays (EDAX) measurements. Results from the EDAX measurements show that both PEDOT‐ and PPy‐based membranes accumulate silver.  相似文献   

4.
Two new PVC membrane electrodes that are highly selective to Ag(I) ions were prepared using (L1) calyx[4]arene (L2) as two suitable neutral carriers. The silver(I) ion selective electrodes exhibit a good response for silver ion over a wide concentration range of 1.0 × 10−1 to 4.2 × 10−6 M (L1) and 1.0 × 10−1 to 6.5 × 10−6 M (L2) with a Nernstian slope of 60 mV per decade (L1) and 58 mV per decade (L2) at 25°C, and was found to be very selective, precise, and usable within the pH range 4.0–8.0. They have a response time of <15 s and can be used for at least 3 months without any measurable divergence in potential. The proposed sensors show a fairly good discriminating ability towards Ag+ ion in comparison to some hard and soft metal ions. The electrodes were used as indicator electrodes in the potentiometric titration of silver ion and in the determination of Ag+ in photographic emulsion and radiographic and photographic films. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 7, pp. 862–868. The article is published in the original.  相似文献   

5.
Silver and lead selective all-plastic ion-selective electrodes were obtained using poly(vinyl chloride)-based membranes and either poly(3,4-ethylenedioxythiophene) or polyaniline dispersion cast on an insulating plastic support as transducer and electrical lead. The effect of interactions of applied conducting polymer with analyte ions on potentiometric responses was evaluated and correlated with changes in elemental composition and element distribution within the ion-selective membrane and the conducting polymer transducer revealed in course of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) experiments. In the case of silver selective electrodes, potentiometric responses obtained are much dependent on the oxidation state of the polymer placed beneath the ion-selective membrane. For semi-oxidized polymer (poly(3,4-ethylenedioxythiophene)-based electrodes, linear responses with detection limit equal to 10−5.4 M were obtained. For a more oxidized polyaniline (of higher conductivity), although the electrodes were pretreated exactly in the same way and tested in parallel, super Nernstian potential slope was recorded within the AgNO3 activities range form 10−6 to 10−7 M. These responses were consistent with results of LA-ICP-MS, revealing profoundly higher silver signals intensities for poly(3,4-ethylenedioxythiophene) underlying silver selective membrane. It seems highly probable that silver is accumulated in this polymer layer as Ag0 due to spontaneous redox reaction leading to oxidation of the polymer; however, this process requires also the presence of silver ions at the interface. In fact, when reduced (deprotonated) polyaniline was used as transducer, the potentiometric responses of the sensor were, within the range of experimental error, the same as obtained for poly(3,4-ethylenedioxythiophene)-based sensor. On the other hand, for lead(II) selective sensors, the difference in responses of electrodes prepared using poly(3,4-ethylenedioxythiophene) or polyaniline was less pronounced, which is in accordance with the elemental composition of these sensors.  相似文献   

6.
《Analytical letters》2012,45(14):2873-2882
ABSTRACT

A silver hexacyanoferrate(II) modified electrode is introduced as a silver-selective electrode. The electrode was prepared based on a new type of chemically modified electrodes by direct modification of the electrode surface. The electrode response characteristics were investigated by potentiometry. The calibration curve of the electrode shows a linear potentiometric response to Ag+ in the range of 10-7 - 10-2 M with detection limit of 5 × 10-8. The modified electrode described in this paper is very simple, low cost and has linear response to Ag+ with a slope of 52-55 mV per decade.  相似文献   

7.
A new nano-sized silver(I) ion-imprinted polymer (IIP) was prepared via precipitation copolymerization using ethyleneglycol dimethacrylate, as a cross-linking agent in the presence of Ag+ and an aza-thioether crown containing a 1,10-phenanthroline subunit as a highly selective complexing agent. The imprint silver(I) ion was removed from the polymeric matrix using a 1.0 M HNO3 solution. The resulting powder material was characterized using IR spectroscopy and scanning electron microscopy. The SEM micrographs showed colloidal nanoparticles of about 52 nm and 75 nm in diameter and slightly irregular in shape for leached and unleached IIPs, respectively. The optimal pH for quantitative enrichment was 6.0 and maximum sorbent capacity of the prepared IIP for Ag+ was 18.08 μmol g−1. The relative standard deviation and limit of detection (LOD = 3Sb/m) for flame atomic absorption spectrometric determination of silver(I) ion, after its selective extraction by the prepared IIP nanobeads, were evaluated as 2.42% and 2.2 × 10−8 M, respectively. The new Ag+-IIP was also applied as a suitable sensing element to the preparation of highly selective and sensitive voltammetric and potentiometric sensors for ultra trace detection of silver(I) ion in water samples, with limits of detection of 9.0 × 10−10 and 1.2 × 10−9 M, respectively.  相似文献   

8.
The performance of calix[2]furano[2]pyrrole and related compounds used as neutral carriers for silver selective polymeric membrane electrode was investigated. The silver ion-selective electrode based on calix[2]furano[2]pyrroles gave a good Nernstian response of 57.1 mV per decade for silver ion in the activity range 1×10−6 to 1×10−2 M. The present silver ion-selective electrode displayed very good selectivity for Ag+ ion against alkali and alkaline earth metal ions, NH4+, and H+. In particular, the present Ag+-selective electrode exhibited very low responses towards Hg2+ and Pb2+ ions. The potentiometric selectivity coefficients of the silver ion-selective electrode exhibited a strong dependence on the solution pH. In particular, the response of the electrode to the Hg2+ activity was greatly diminished at pH 2.5 compared to that at pH 5.0. Overall, the performance of the present silver ion-selective electrode based on the ionophore, calix[2]furano[2]pyrrole, is very comparable to that of the electrode prepared with the commercially available neutral carrier in terms of slope, linear range, and detection limits.  相似文献   

9.
Acidic aqueous solutions containing pyrrole and alkoxysulfonated PEDOT derivative (PEDOT‐S) were found to undergo polymerization in the absence of an external oxidizing agent. The product was a nearly black‐colored conducting hydrogel that after separation could be dispersed in water or acetone. The suspensions could be used to deposit cast films on a polycrystalline gold electrode. The polymer modified electrode showed a nearly Nernstian potentiometric response to Ag+ cations in the concentration range of 10?5–10?1 M with the slope of 54 mV/decade. The response was specific to Ag+ compared to a series of alkali and transition‐metal cations (pKAg/M>3.7).  相似文献   

10.
A polystyrene-based membrane of 7,8:16,17-dibenzo-6,9,15,18-tetraoxo-1,5,10,14-tetrathiacyclooctadeca-7,16-diene [Bz2Oxo4(18)dieneS4] was fabricated using sodium tetraphenylborate (NaTPB) and dioctyl phthalate (DOP) as anion excluder and plasticizing agent. The best performance was obtained from the membrane with the composition ionophore [Bz2Oxo4(18)dieneS4]:polystyrene:DOP:NaTPB, 5:100:150:10 (w/w). The response of the electrode was linear over a wide range of concentration, 1.26×10–6–1.00×10–1 mol L−1 for silver ion with a Nernstian slope of 58.4±0.1 mV per decade and a detection limit of 1.0×10−6 mol L−1. The electrode was found to be chemically inert and of adequate stability with a response time of 10 s and could be used for a period of 3 months without change of potential. It worked satisfactorily in mixtures containing up to 35% (v/v) non-aqueous content. The proposed membrane sensor had good selectivity for Ag+ over a wide variety of metal ions in the pH range 2.2–8.5. It was successfully used as an indicator electrode in potentiometric titration of silver ion. The electrode was also useful for determination of Ag+ in waste from photographic films.  相似文献   

11.
Hexacyanoferrate(II)-sensing electrodes were prepared by mixing Ag2S and Ag4Fe (CN)6. The 6:1 Ag2S/Ag4Fe (CN)6 provided the best potentiometric response and speed of response. The log concentration vs. potential curves were linear with Nernstian slope (14.8 mV/decade) over the range 10?1-10?6 M hexacyanoferrate (II) at pH 7.00 with constant ionic strength. Interferences included iodide, sulfide and bromide. This electrode was used as indicator in potentiometric titrations of hexacyanoferrate (II).  相似文献   

12.
New poly(vinylchloride) (PVC) based liquid membrane sensors are reported containing neutral macrocyclic carrier as potential ionophores for sensing silver ions. Three macrocycles (L1, L2 and L3) possessing two thioether, two amide and one secondary amine unit have been used in new PVC membrane-based sensor. At wide pH range of 4.5 to 8.0, these sensors exhibit linear responses in the concentration range of 1 × 10–4 to 0.1 M and detection limit 6 × 10–5 M for L1 and 1 × 10–4 M for L2 and L3 respectively with pseudo-Nernstian slopes between 43?46 mV/decade for all the three sensors. These sensors have short response time (<15 s) and long life time as these sensors do not show any considerable divergence in their performance over a period of four months. These sensors exhibit good selectivity for Ag+ over wide variety of interfering ions like alkali, alkaline earth, transition and some heavy metal ions. These proposed sensors could be used successfully as indicator electrodes in the potentiometric determination of Ag+ ions and also to determine anions like Cl, Br, I, S2, SCN and CN. Potentiometric titrations for halide ions in a mixture using these sensors and new titration method for the determination of detection limits are reported.  相似文献   

13.
Potentiometric ion sensors have been prepared by galvanostatic electrosynthesis of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with p-sulfonated calix[4]arene (C[4]S) and p-methylsulfonated calix[4]resorcarenes (Rn[4]S) with alkyl substituents of different chain length (R1=CH3; R2=C2H5; R3=C6H13). The bowl-shape of these doping ions makes them suitable as ionic recognition sites, and their bulky character is expected to prevent them from leaching out of the conducting polymer membrane. For comparison, sensors based on PEDOT doped with poly(styrene sulfonate) (PSS) and poly(vinyl sulfonate) (PVS) were also constructed. The resulting GC/PEDOT electrodes were conditioned in 0.01 mol L–1 AgNO3 and their performance as Ag+ ion-selective electrodes (ISEs) studied. Results reveal that selectivity and lifetime of the electrodes is affected by the doping anion structure, although all electrodes show selectivity towards Ag+ ions. Interaction of Ag+ with sulfur atoms present in the conducting polymer backbone is considered to be the main reason for this behavior. A second set of electrodes was constructed and conditioned in 0.1 mol L–1 KCl. These electrodes were tested in chloride solutions of quaternary ammonium cations, showing that C[4]S and R2[4]S exhibit significant sensitivity towards pyridinium.Dedicated to Professor György Horányi on the occasion of his 70th birthday in recognition of his outstanding contributions to electrochemistry  相似文献   

14.
Novel polymeric membrane (PME) and coated graphite (CGE) silver-selective electrodes based on two recently synthesized mixed azathioether crowns containing a 1,10-phenanthroline sub-unit were prepared. The electrodes reveal a Nernstian behavior over quite wide Ag+ ion concentration ranges with a very low limits of detection (LOD) (i.e. down to 1.0×10−8 M for CGEs and 8.0×10−7 M for PMEs). The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.0. The electrodes possess advantages of low resistance, very fast response time, relatively long lifetimes and, especially, good selectivities relative to a wide variety of other cations. The electrodes were used, as indicator electrodes, in the potentiometric titration of silver ion and in the determination of Ag+ in waste water, photographic emulsion and radiographic and photographic films.  相似文献   

15.
1. In aqueous solutions of phosphoric acid or alcali phosphates, the PO4-3can be determined by potentiometric titraition with silver nitrate PO4-3 + 3 Ag+ ár unAg3PO4↓The pH value of the solution is maintained about 9 by using borax-buffer 2 The determination of phosphate ion is also possible by precipitation of Ag3PO4 with an excess of silver nitrate, the pH of the solution is adjusted between 7 and 8 by using a new buffer mixture containing NH4+, NHXXX, and Ag+. After diluting the solution up to a known volume and filtering through dry filter paper, the excess of silver is determined by potentiometric titration with potassium bromide. This method gives very good results, it is applicable in the presence of Mg+2 and Ca+2. The presence of Fe+3 and Al+3 hinders the determination of the phosphate ion. 3. The properties of the ,,ammonium-silverdiamme” buffer system are described. This buffer contains NH4+, NH3 and Ag+ (the latter in excess with regard to NH3)  相似文献   

16.
X-ray diffraction analysis of [Ag3(CHF2COO)3(H2O)2] revealed that its crystals are orthorhombic: space group Cmca, a = 13.809(4) Å, b = 15.975(2) Å, c = 12.244(2) Å, Z = 8. The thermogravimetric analysis showed that under the atmosphere of N2 and at 101.3 kPa, silver difluoroacetate melts at 488 K; the thermal decomposition reaction occurs in the interval 493–548 K with the formation of Ag. Under the mass-spectral experiment conditions at 521 K, two processes occur simultaneously, namely, evaporation and decomposition. The following ions were detected in the mass-spectrum of silver difluoroacetate: Ag2L+, Ag2R+, Ag2F+, Ag2O+, Ag2 +, Ag+, LH+, RCO+, R+ (L = CHF2COO, R = CHF2).  相似文献   

17.
Polyvinyl alcohol (PVA) nanofibers containing Ag nanoparticles were prepared by electrospinning PVA/silver nitrate (AgNO3) aqueous solutions, followed by short heat treatment, and their antimicrobial activity was investigated for wound dressing applications. Since PVA is a water soluble and biocompatible polymer, it is one of the best materials for the preparation of wound dressing nanofibers. After heat treatment at 155 °C for 3 min, the PVA/AgNO3 nanofibers became insoluble, while the Ag+ ions therein were reduced so as to produce a large number of Ag nanoparticles situated preferentially on their surface. The residual Ag+ ions were reduced by subsequent UV irradiation for 3 h. The average diameter of the Ag nanoparticles after the heat treatment was 5.9 nm and this value increased slightly to 6.3 nm after UV irradiation. It was found that most of the Ag+ ions were reduced by the simple heat treatment. The PVA nanofibers containing Ag nanoparticles showed very strong antimicrobial activity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2468–2474, 2006  相似文献   

18.
《Electroanalysis》2002,14(24):1691-1698
Three different recently synthesized aza‐thioether crowns containing a 1,10‐phenanthroline sub‐unit (L1–L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC‐membrane electrodes. Novel conventional silver‐selective electrodes with internal reference solution (CONISE) and coated graphite‐solid contact electrodes (SCISE) were prepared based on one of the 15‐membered crowns containing two donating S atoms and two phenanthroline‐N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10?5?1.0×10?1 M for CONISE and 5.0×10?8?4.0×10?2 M for SCISE) and very low limits of detection (8.0×10?6 M for CONISE and 3.0×10?8 M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0–8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films.  相似文献   

19.
《Analytical letters》2012,45(7):1519-1533
Abstract

Plasticized thin films of polyurethane (PU) mixed with poly(vinyl chloride)(PVC) or a terpolymer of poly(vinyl chloride)/(vinyl acetate)/(vinyl alcohol) (PVA) are examined as membrane matrices for the preparation of reversible optical ion sensors. Optical sensors for Na+, NH4 +, Cl? and ClO4 ? are prepared by casting thin films of the polymer mixtures (PU/PVC (1:1 wt) and PU/PVA (4:1 wt)) containing appropriate ion carriers and pH chromophores on glass slides. The optical response properties of these membranes is essentially the same as conventional pure PVC membranes reported in the literature. However, significantly enhanced membrane adhesion to glass or silicon wafer surfaces is observed using the polyurethane based matrices, making them more suitable than PVC for use in the development of solid-state optical ion sensing devices.  相似文献   

20.
Cobalt sulfide coatings have been investigated by means of cyclic voltammetry in 0.1 M KClO4 and 0.1 M NaOH solutions and analyzed using X-ray photoelectron spectroscopy. They have been shown to contain CoS(OH), CoS and Co(OH)2. After treating such Co sulfide coatings with AgNO3 solution, their composition changes: both the cobalt and oxygen content decreases and Ag (up to 85 at%) appears in the coating as Ag2S, Ag2O and metallic Ag. Co(II) compounds react with Ag+ ions according to an exchange reaction [CoS+2Ag++2H2O→Ag2S+Co(OH)2+2H+]. In the course of the reaction of Co(OH)2 with silver ions, a redox process occurs, giving metallic silver [Co(OH)2+Ag++H2O→Ag°+Co(OH)3+H+ or Co(OH)2+Ag+→Ag°+CoO(OH)+H+]. Ag2S reduction takes place at more positive potentials than Cu reduction; therefore sulfide layers of cobalt modified with silver ions, unlike unmodified ones, may be plated with Cu from both acid and alkaline electrolytes. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号